
REFERENCES
Bengio, Y. (2012). Deep learning of representations for
unsupervised and transfer learning. In Guyon, I.,
Dror, G., Lemaire, V., Taylor, G., and Silver, D., edi-
tors, Proceedings of ICML Workshop on Unsupervised
and Transfer Learning, volume 27 of Proceedings of
Machine Learning Research, pages 17–36, Bellevue,
Washington, USA. PMLR.
Broekema, W. (2016). Crisis-induced learning and issue
politicization in the eu: The braer, sea empress, erika,
and prestige oil spill disasters. Public Administration,
94(2):381–398.
Chaurasia, A. and Culurciello, E. (2017). Linknet: Exploit-
ing encoder representations for efficient semantic seg-
mentation. CoRR, abs/1707.03718.
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K.,
and Yuille, A. L. (2016). Deeplab: Semantic
image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. CoRR,
abs/1606.00915.
Chen, L., Papandreou, G., Schroff, F., and Adam, H.
(2017). Rethinking atrous convolution for semantic
image segmentation. CoRR, abs/1706.05587.
Chen, L., Zhu, Y., Papandreou, G., Schroff, F., and Adam,
H. (2018). Encoder-decoder with atrous separable
convolution for semantic image segmentation. CoRR,
abs/1802.02611.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.
Deng, L. (2012). The mnist database of handwritten digit
images for machine learning research [best of the
web]. IEEE Signal Processing Magazine, 29(6):141–
142.
Dunnet, G. M., Crisp, D. J., Conan, G., Bournaud, R.,
Cole, H. A., and Clark, R. (1982). Oil pollution and
seabird populations. Philosophical Transactions of
the Royal Society of London. B, Biological Sciences,
297(1087):413–427.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.
Krestenitis, M., Orfanidis, G. A., Ioannidis, K., Avgeri-
nakis, K., Vrochidis, S., and Kompatsiaris, Y. (2019).
Oil spill identification from satellite images using
deep neural networks. Remote. Sens., 11:1762.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Back-
propagation applied to handwritten zip code recogni-
tion. Neural Computation, 1(4):541–551.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Doll
´
ar, P.,
and Zitnick, C. L. (2014). Microsoft COCO: common
objects in context. CoRR, abs/1405.0312.
Long, J., Shelhamer, E., and Darrell, T. (2014). Fully
convolutional networks for semantic segmentation.
CoRR, abs/1411.4038.
Middlebrook, A., Ahmadov, R., Atlas, E., Bahreini, R.,
Blake, D., Brioude, J., Brock, C., de Gouw, J., Fahey,
D., Fehsenfeld, F., Holloway, J., Lueb, R., McKeen,
S., Meagher, J., Meinardi, S., Murphy, D., Parrish, D.,
Peischl, J., and Watts, L. (2010). Air quality impact
of the deepwater horizon oil spill (invited). AGU Fall
Meeting Abstracts, pages 02–.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. CoRR, abs/1505.04597.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and
Chen, L. (2018). Inverted residuals and linear bottle-
necks: Mobile networks for classification, detection
and segmentation. CoRR, abs/1801.04381.
Shigenaka, G. (2009). Hindsight and foresight: 20 years
after the exxon valdez spill. USA: National Oceanic
and Atmospheric Administration, page 18.
Tan, M. and Le, Q. V. (2021). Efficientnetv2: Smaller mod-
els and faster training. CoRR, abs/2104.00298.
Tan, M., Pang, R., and Le, Q. V. (2019). Efficient-
det: Scalable and efficient object detection. CoRR,
abs/1911.09070.
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2016). Pyra-
mid scene parsing network. CoRR, abs/1612.01105.
Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2017).
Learning transferable architectures for scalable image
recognition. CoRR, abs/1707.07012.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
748