REFERENCES
Agnew, R. P. (1944). Euler Transformations. American
Journal of Mathematics, 66(2), 313. https://doi.org/
10.2307/2371990
Blandeau, M., Guichard, R., Hubaut, R. & Leteneur, S.
(2023). IMU positioning affects range of motion
measurement during squat motion analysis. Journal of
Biomechanics, 153(April). https://doi.org/10.1016/
j.jbiomech.2023.111598
Coca-Tapia, M., Cuesta-Gómez, A., Molina-Rueda, F. &
Carratalá-Tejada, M. (2021). Gait pattern in people
with multiple sclerosis: A systematic review.
Diagnostics, 11(4), 1–11. https://doi.org/10.3390/diag
nostics11040584
Das, P., Chakravarty, K., Chowdhury, A., Chatterjee, D.,
Sinha, A. & Pal, A. (2018). Improving joint position
estimation of Kinect using anthropometric constraint
based adaptive Kalman filter for rehabilitation.
Biomedical Physics and Engineering Express, 4(3).
https://doi.org/10.1088/2057-1976/aaa371
Diebel, J. (2006). Representing attitude: Euler angles, unit
quaternions, and rotation vectors. Matrix, 58, 1–35.
ftp://sbai2009.ene.unb.br/Projects/GPS-
IMU/George/arquivos/Bibliografia/79.pdf
Giannakopoulos, T. & Pikrakis, A. (2014). Introduction to
Audio Analysis: A MATLAB Approach. In
Introduction to Audio Analysis: A MATLAB Approach
(pp. 1–266). https://doi.org/10.1016/C2012-0-03524-7
Grisbrook, T., Imms, C., Walmsley, C. P., Campbell, A.,
Elliott, C. & Williams, S. A. (2018). Measurement of
upper limb range of motion using wearable sensors: a
systematic review. Sports Medicine - Open.
Gülşen, Ç., Söke, F., Aydin, F., Özcan Gülşen, E., Yilmaz,
Ö., Koçer, B., Çürük, E., Demirkaya, Ş. & Yücesan, C.
(2024). Effect of task difficulty on dual-task cost during
dual-task walking in people with multiple sclerosis.
Gait and Posture, 114(March), 95–100.
https://doi.org/10.1016/ j.gaitpost.2024.09.003
Heesen, C., Böhm, J., Reich, C., Kasper, J., Goebel, M. &
Gold, S. M. (2008). Patient perception of bodily
functions in multiple sclerosis: Gait and visual function
are the most valuable. Multiple Sclerosis, 14(7), 988–
991. https://doi.org/10.1177/1352458508088916
Huang, J., Wang, H., Wu, Q., Yin, J., Zhou, H. & He, Y.
(2024). Clinical research on neurological and
psychiatric diagnosis and monitoring using wearable
devices: A literature review. Interdisciplinary
Medicine, March. https://doi.org/10.1002/inmd.202300
37
Keskinoğlu, C. & Aydın, A. (2021). Wearable wireless
low-cost electrogoniometer design with Kalman filter
for joint range of motion measurement and 3D
modeling of joint movements. Proceedings of the
Institution of Mechanical Engineers, Part H: Journal of
Engineering in Medicine, 235(2), 222–231.
https://doi.org/10.1177/0954411920971398
LaRocca, N. G. (2011). Impact of Walking Impairment in
Multiple Sclerosis. The Patient: Patient-Centered
Outcomes Research, 4(3), 189–201. https://doi.org/
10.2165/11591150-000000000-00000
Latimer, C. G. (1948). Quaternion algebras. Duke
Mathematical Journal, 15(2), 357–366. https://doi.org/
10.1215/S0012-7094-48-01534-8
Senesh, M. & Wolf, A. (2009). Motion estimation using
point cluster method and Kalman filter. Journal of
Biomechanical Engineering, 131(5). https://doi.org/
10.1115/1.3116153
Soucie, J. M., Wang, C., Forsyth, A., Funk, S., Denny, M.,
Roach, K. E. & Boone, D. (2011). Range of motion
measurements: Reference values and a database for
comparison studies. Haemophilia, 17(3), 500–507.
https://doi.org/10.1111/j.1365-2516.2010.02399.x
Torres-Pareja, M., Sánchez-Lastra, M. A., Iglesias, L.,
Suárez-Iglesias, D., Mendoza, N. & Ayán, C. (2019).
Exercise interventions for improving flexibility in
people with multiple sclerosis: A systematic review and
meta-analysis. Medicina (Lithuania), 55(11).
https://doi.org/10.3390/medicina55110726