
REFERENCES
Bai, S., Tang, P., Torr, P. H., and Latecki, L. J. (2019). Re-
ranking via metric fusion for object retrieval and per-
son re-identification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys (Csur), 40(2):1–60.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. (2021). An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR.
Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M.
(2021). Uniform manifold approximation and projec-
tion (umap) and its variants: Tutorial and survey.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR, pages
770–778.
Jiang, J., Wang, B., and Tu, Z. (2011). Unsupervised metric
learning by self-smoothing operator. In 2011 Inter-
national Conference on Computer Vision, pages 794–
801.
Kawai, V. A. S., Leticio, G. R., Valem, L. P., and Pedronette,
D. C. G. (2024). Neighbor embedding projection and
rank-based manifold learning for image retrieval. In
2024 37th SIBGRAPI Conference on Graphics, Pat-
terns and Images (SIBGRAPI), pages 1–6.
Kibriya, A. M. and Frank, E. (2007). An empirical com-
parison of exact nearest neighbour algorithms. In
11th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, ECMLP-
KDD’07, page 140–151.
Kipf, T. N. and Welling, M. (2017). Semi-supervised classi-
fication with graph convolutional networks. In 5th In-
ternational Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.
Klicpera, J., Bojchevski, A., and G
¨
unnemann, S. (2019).
Predict then propagate: Graph neural networks meet
personalized pagerank. In International Conference
on Learning Representations, ICLR 2019.
Leticio, G., Valem, L. P., Lopes, L. T., and Pedronette, D.
C. G. a. (2023). pyudlf: A python framework for un-
supervised distance learning tasks. In Proceedings of
the 31st ACM International Conference on Multime-
dia, MM ’23, page 9680–9684, New York, NY, USA.
Association for Computing Machinery.
Leticio, G. R., Kawai, V. S., Valem, L. P., Pedronette, D.
C. G., and da S. Torres, R. (2024). Manifold informa-
tion through neighbor embedding projection for image
retrieval. Pattern Recognition Letters, 183:17–25.
Li, Q., Wu, X.-M., Liu, H., Zhang, X., and Guan, Z. (2019).
Label efficient semi-supervised learning via graph fil-
tering. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9582–
9591.
Liu, G.-H. and Yang, J.-Y. (2013). Content-based image
retrieval using color difference histogram. Pattern
Recognition, 46(1):188 – 198.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,
and Guo, B. (2021). Swin transformer: Hierarchical
vision transformer using shifted windows. ICCV.
McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for di-
mension reduction.
Miao, X., G
¨
urel, N. M., Zhang, W., Han, Z., Li, B., Min,
W., Rao, S. X., Ren, H., Shan, Y., Shao, Y., et al.
(2021). Degnn: Improving graph neural networks
with graph decomposition. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery &
data mining, pages 1223–1233.
Nilsback, M.-E. and Zisserman, A. (2006). A visual vo-
cabulary for flower classification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 1447–1454.
Oquab, M., Darcet, T., Moutakanni, T., et al. (2023). Di-
nov2: Learning robust visual features without super-
vision. arXiv preprint arXiv:2304.07193.
Pedronette, D. C. G., Valem, L. P., Almeida, J., and da S.
Torres, R. (2019). Multimedia retrieval through unsu-
pervised hypergraph-based manifold ranking. IEEE
Transactions on Image Processing, 28(12):5824–
5838.
Pedronette, D. C. G., Valem, L. P., and Latecki, L. J. (2021).
Efficient rank-based diffusion process with assured
convergence. Journal of Imaging, 7(3).
Valem, L. P., Oliveira, C. R. D., Pedronette, D. C. G., and
Almeida, J. (2018). Unsupervised similarity learn-
ing through rank correlation and knn sets. TOMM,
14(4):1–23.
Valem, L. P., Pedronette, D. C. G., and Latecki, L. J.
(2023a). Graph convolutional networks based on man-
ifold learning for semi-supervised image classifica-
tion. Computer Vision and Image Understanding,
227:103618.
Valem, L. P., Pedronette, D. C. G., and Latecki, L. J.
(2023b). Rank flow embedding for unsupervised and
semi-supervised manifold learning. IEEE Trans. Im-
age Process., 32:2811–2826.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605.
Wah, C., Branson, S., Welinder, P., Perona, P., and Be-
longie, S. (2011). The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology.
Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. (2019). Simplifying graph convolutional
networks. In International Conference on Machine
Learning (ICML), volume 97, pages 6861–6871.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
518