and Existing Predictors for Successful EEG
Neurofeedback Learning. Neuroscience, 378, 155–164.
Al-Quraishi, M. S., Elamvazuthi, I., Daud, S. A.,
Parasuraman, S., & Borboni, A. (2018). EEG-Based
Control for Upper and Lower Limb Exoskeletons and
Prostheses: A Systematic Review. Sensors (Basel,
Switzerland), 18, 3342.
Ambrogioni, L., Gerven, M. A. J. van, & Maris, E. (2017).
Dynamic decomposition of spatiotemporal neural
signals. PLOS Computational Biology, 13(5).
Barachant, A., Barthélemy, Q., Wagner vom Berg, G.,
Gramfort, A., King, J.-R., & Rodrigues, P. L. C. (2024).
pyRiemann/pyRiemann: V0.6 (Version v0.6)
[Computer software].
Barthélemy, Q., Mayaud, L., Renard, Y., Kim, D., Kang,
S.-W., Gunkelman, J., & Congedo, M. (2017). Online
denoising of eye-blinks in electroencephalography.
Clinical Neurophysiology, 47(5–6), 371–391.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the
False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing. Journal of the Royal
Statistical Society: Series B (Methodological), 57(1),
289–300.
Bertrand, O., Tallon-Baudry, C., & Pernier, J. (2000). Time-
Frequency Analysis of Oscillatory Gamma-Band
Activity: Wavelet Approach and Phase-Locking
Estimation (Vol. 2, pp. 919–922).
Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., &
Muller, K. (2008). Optimizing Spatial filters for Robust
EEG Single-Trial Analysis. IEEE Signal Processing
Magazine, 25(1), 41–56.
Chavez, M., Grosselin, F., Bussalb, A., De Vico Fallani, F.,
& Navarro-Sune, X. (2018). Surrogate-Based Artifact
Removal From Single-Channel EEG. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 26(3), 540–550.
Congedo, M., Gouy-Pailler, C., & Jutten, C. (2008). On the
blind source separation of human electroencephalo-
gram by approximate joint diagonalization of second
order statistics. Clinical Neurophysiology, 119(12),
2677–2686.
Croft, R. J., & Barry, R. J. (2000). EOG correction of blinks
with saccade coefficients: A test and revision of the
aligned-artefact average solution. Clinical
Neurophysiology, 111(3), 444–451.
Delorme, A., Sejnowski, T., & Makeig, S. (2007).
Enhanced detection of artifacts in EEG data using
higher-order statistics and independent component
analysis. NeuroImage, 34(4), 1443–1449.
Dussard, C., Pillette, L., Dumas, C., Pierrieau, E.,
Hugueville, L., Lau, B., Jeunet-Kelway, C., & George,
N. (2024). Influence of feedback transparency on motor
imagery neurofeedback performance: The contribution
of agency. Journal of Neural Engineering, 21(5).
Friedman, D., Claassen, J., & Hirsch, L. J. (2009).
Continuous electroencephalogram monitoring in the
intensive care unit. Anesthesia and Analgesia, 109(2),
506–523.
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A.,
Strohmeier, D., Brodbeck, C., Parkkonen, L., &
Hämäläinen, M. S. (2014). MNE software for
processing MEG and EEG data. NeuroImage, 86, 446–
460.
Hagemann, D., & Naumann, E. (2001). The effects of
ocular artifacts on (lateralized) broadband power in the
EEG. Clinical Neurophysiology, 112(2), 215–231.
Islam, Md. K., Rastegarnia, A., & Sanei, S. (2021). Signal
Artifacts and Techniques for Artifacts and Noise
Removal. In Signal Processing Techniques for
Computational Health Informatics (Vol. 192, pp. 23–
79). Springer.
Iwasaki, M., Kellinghaus, C., Alexopoulos, A. V., Burgess,
R. C., Kumar, A. N., Han, Y. H., Lüders, H. O., &
Leigh, R. J. (2005). Effects of eyelid closure, blinks,
and eye movements on the electroencephalogram.
Clinical Neurophysiology, 116(4), 878–885.
Jafarifarmand, A., & Badamchizadeh, M. A. (2019). EEG
Artifacts Handling in a Real Practical Brain–Computer
Interface Controlled Vehicle. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 27(6),
1200–1208.
Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of
Artifacts from EEG Signals: A Review. Sensors (Basel,
Switzerland), 19(5), 987.
Joyce, C. A., Gorodnitsky, I. F., & Kutas, M. (2004).
Automatic removal of eye movement and blink artifacts
from EEG data using blind component separation.
Psychophysiology, 41(2), 313–325.
Karson, C. N. (1983). Spontaneous Eye-Blinks Rates and
Dopaminergic Systems. Brain, 106(3), 643–653.
Kimura, N., Watanabe, A., Suzuki, K., Toyoda, H.,
Hakamata, N., Fukuoka, H., Washimi, Y., Arahata, Y.,
Takeda, A., Kondo, M., Mizuno, T., & Kinoshita, S.
(2017). Measurement of spontaneous blinks in patients
with Parkinson’s disease using a new high-speed blink
analysis system. Journal of the Neurological Sciences,
380, 200–204.
Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008).
Representational similarity analysis—Connecting the
branches of systems neuroscience. Frontiers in Systems
Neuroscience, 2
.
Langlois, D., Chartier, S., & Gosselin, D. (2010). An
Introduction to Independent Component Analysis:
InfoMax and FastICA algorithms. Tutorials in
Quantitative Methods for Psychology, 6(1), 31–38.
Larson, E., Gramfort, A., Engemann, D. A., Leppakangas,
J., Brodbeck, C., Jas, M., Brooks, T. L., Sassenhagen,
J., McCloy, D., Luessi, M., King, J.-R., Höchenberger,
R., Goj, R., Favelier, G., Brunner, C., van Vliet, M.,
Wronkiewicz, M., Rockhill, A., Holdgraf, C., …
luzpaz. (2024). MNE-Python (Version v1.8.0)
[Computer software].
Lotte, F., Bougrain, L., & Clerc, M. (2015).
Electroencephalography (EEG)‐Based Brain–
Computer Interfaces. In J. G. Webster (Ed.), Wiley
Encyclopedia of Electrical and Electronics
Engineering (1st ed., p. 44). Wiley.
Makeig, S., Bell, A., Jung, T.-P., & Sejnowski, T. (1996).
Independent Component Analysis of Electroencephalo-