
to patient-specific characteristics. We mitigated data-
driven bias for the age feature and reduced algorith-
mic bias in their image triage approach by mixing
imaging slices from positive and negative classes.
This method allowed the machine learning model
to learn generalizable features, enhancing robustness
and minimizing patient-specific biases. Initial results
suggest the image triage method’s potential to create
more accurate and unbiased classifiers. Future work
will focus on developing a score-based triage system
to assign relevance scores to images based on their in-
formational value for detecting clinically significant
prostate cancer and predicting prostate cancer risk us-
ing behavioral data, such as nutritional features.
REFERENCES
Ageing — oecd.org. https://www.oecd.org/en/topics/
policy-issues/ageing.html. [Accessed 14-11-2024].
Biederer, T. et al. (2016). Simpleitk: A simplified layer
of itk for medical image processing. The Journal of
Digital Imaging, 29(4):32–48.
Brembilla, G., Dell’Oglio, P., Stabile, A., Damascelli, A.,
Brunetti, L., Ravelli, S., Cristel, G., Schiani, E., Ven-
turini, E., Grippaldi, D., et al. (2020). Interreader vari-
ability in prostate mri reporting using prostate imag-
ing reporting and data system version 2.1. European
radiology, 30:3383–3392.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
He, M., Cao, Y., Chi, C., Yang, X., Ramin, R., Wang,
S., Yang, G., Mukhtorov, O., Zhang, L., Kazantsev,
A., et al. (2023). Research progress on deep learn-
ing in magnetic resonance imaging–based diagnosis
and treatment of prostate cancer: a review on the cur-
rent status and perspectives. Frontiers in Oncology,
13:1189370.
Hooshmand, A. (2021). Accurate diagnosis of prostate
cancer using logistic regression. Open Med (Wars),
16(1):459–463.
Jalali, A., Foley, R., Maweni, R., Murphy, K., Lundon,
D., Lynch, T., Power, R., O’Brien, F., O’Malley, K.,
Galvin, D., Durkan, G., Murphy, T., and Watson, R.
(2020). Integrating inflammatory serum biomarkers
into a risk calculator for prostate cancer detection.
BJU International, 125(1):61–68.
Jalali, A., Foley, R., Maweni, R., Murphy, K., Lundon,
D., Lynch, T., Power, R., O’Brien, F., O’Malley, K.,
Galvin, D., Durkan, G., Murphy, T., and Watson, R.
(2023). A risk calculator to inform the need for a
prostate biopsy: a rapid access clinic cohort. Unpub-
lished manuscript.
Jiang, X., Hu, Z., Wang, S., and Zhang, Y. (2023). Dl
for medical image-based cancer diagnosis. Cancers
(Basel), 15(14):3608.
Mottet, N., Bellmunt, J., and Bolla, M. (2017). Eau-estro-
siog guidelines on prostate cancer. European Urology,
71(4):618–629.
Mottet, N. et al. (2021). Eau-eanm-estro-esur-siog guide-
lines on prostate cancer. European Association of
Urology.
Pecoraro, M., Messina, E., Bicchetti, M., Carnicelli, G.,
Del Monte, M., Iorio, B., La Torre, G., Catalano, C.,
and Panebianco, V. (2021). The future direction of
imaging in prostate cancer: Mri with or without con-
trast injection. Andrology, 9(5):1429–1443.
Pellicer-Valero, O. J., Marenco Jimenez, J. L.,
Gonzalez-Perez, V., Casanova Ramon-Borja,
J. L., Mart
´
ın Garc
´
ıa, I., Barrios Benito, M.,
Pelechano Gomez, P., Rubio-Briones, J., Rupe
´
erez,
M. J., and Mart
´
ın-Guerrero, J. D. (2022). Dl for
fully automatic detection, segmentation, and gleason
grade estimation of prostate cancer in multiparametric
magnetic resonance images. Scientific reports,
12(1):2975.
Saha, A., Bosma, J. S., Twilt, J. J., van Ginneken, B.,
Bjartell, A., Padhani, A. R., Bonekamp, D., Villeirs,
G., Salomon, G., Giannarini, G., et al. (2024). Artifi-
cial intelligence and radiologists in prostate cancer de-
tection on mri (pi-cai): an international, paired, non-
inferiority, confirmatory study. The Lancet Oncology.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2818–2826.
Wang, L., Lu, B., He, M., Wang, Y., Wang, Z., and Du,
L. (2022). Prostate cancer incidence and mortality:
Global status and temporal trends in 89 countries from
2000 to 2019. Frontiers in Public Health, 10.
ICAART 2025 - 17th International Conference on Agents and Artificial Intelligence
1092