OpenAI. (2022). Text-embedding-ada-002. OpenAI.
https://platform.openai.com/docs/guides/embeddings
Pan, Z., Pan, G., & Monti, A. (2022). Semantic-Similarity-
Based Schema Matching for Management of Building
Energy Data. Energies, 15(23), 8894. https://doi.
org/10.3390/en15238894
Sahay, T., Mehta, A., & Jadon, S. (2020). Schema Matching
using Machine Learning. 2020 7th International
Conference on Signal Processing and Integrated
Networks (SPIN), 359–366. https://doi.org/10.
1109/SPIN48934.2020.9071272
Satti, F. A., Hussain, M., Hussain, J., Ali, S. I., Ali, T., Bilal,
H. S. M., Chung, T., & Lee, S. (2021). Unsupervised
Semantic Mapping for Healthcare Data Storage
Schema. IEEE Access, 9, 107267–107278.
https://doi.org/10.1109/ACCESS.2021.3100686
Schema.org. (2024). Schema vocabulary for structured
data on the Internet (Version 28) [Computer software].
Schema.org. https://schema.org/
Sett, A., Hashemifar, S., Yadav, M., Pandit, Y., & Hejrati,
M. (2024). Speaking the Same Language: Leveraging
LLMs in Standardizing Clinical Data for AI (No.
arXiv:2408.11861). arXiv. http://arxiv.org/abs/2408.
11861
Sheetrit, E., Brief, M., Mishaeli, M., & Elisha, O. (2024).
ReMatch: Retrieval Enhanced Schema Matching with
LLMs (No. arXiv:2403.01567). arXiv. http://arxiv.
org/abs/2403.01567
Shrestha, M., Tran, T. X., Bhattarai, B., Pusey, M. L., &
Aygun, R. S. (2020). Schema Matching and Data
Integration with Consistent Naming on Protein
Crystallization Screens. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 17(6),
2074–2085. https://doi.org/10.1109/TCBB.2019.
2913368
Stojanov, R., Kocev, I., Gramatikov, S., Popovski, G.,
Korousic Seljak, B., & Eftimov, T. (2020). Toward
Robust Food Ontology Mapping. 2020 IEEE
International Conference on Big Data (Big Data),
3596–3601. https://doi.org/10.1109/BigData50022.
2020.9378066
Transformers, S. (2020). All-MiniLM-L6-v2 [Computer
software]. https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
Wang, J., Shi, E., Yu, S., Wu, Z., Ma, C., Dai, H., Yang, Q.,
Kang, Y., Wu, J., Hu, H., Yue, C., Zhang, H., Liu, Y.,
Pan, Y., Liu, Z., Sun, L., Li, X., Ge, B., Jiang, X., …
Zhang, S. (2024). Prompt Engineering for Healthcare:
Methodologies and Applications (No.
arXiv:2304.14670). arXiv. http://arxiv.org/abs/2304.
14670
Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., & Zhou,
M. (2020). MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained
Transformers (No. arXiv:2002.10957). arXiv.
http://arxiv.org/abs/2002.10957
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., & Schmidt, D. C.
(2023). A Prompt Pattern Catalog to Enhance Prompt
Engineering with ChatGPT (No. arXiv:2302.11382).
arXiv. http://arxiv.org/abs/2302.11382
Yousfi, A., Hafid, M., & Zellou, A. (2020). xMatcher:
Matching Extensible Markup Language Schemas using
Semantic-based Techniques. International Journal of
Advanced Computer Science and Applications,
11(8).
https://doi.org/10.14569/IJACSA.2020.0110880
Zhang, J., Shin, B., Choi, J. D., & Ho, J. C. (2021). SMAT:
An Attention-Based Deep Learning Solution to the
Automation of Schema Matching. In L. Bellatreche, M.
Dumas, P. Karras, & R. Matulevičius (Eds.), Advances
in Databases and Information Systems (Vol. 12843, pp.
260–274). Springer International Publishing. https://
doi.org/10.1007/978-3-030-82472-3_19
Zhang, Y., Floratou, A., Cahoon, J., Krishnan, S., Müller,
A. C., Banda, D., Psallidas, F., & Patel, J. M. (2023,
January). Schema Matching using Pre-Trained
Language Models. ICDE. https://www.microsoft.
com/en-us/research/publication/schema-matching-using
-pre-trained-language-models/
Zhou, X., Dhingra, L. S., Aminorroaya, A., Adejumo, P., &
Khera, R. (2024). A Novel Sentence Transformer-based
Natural Language Processing Approach for Schema
Mapping of Electronic Health Records to the OMOP
Common Data Model. Health Informatics.
https://doi.org/10.1101/2024.03.21.24304616.