
Canada (NSERC) through the grant DG-2018-04449.
The work of the fourth author was supported by
an Alberta Innovates Summer Research Studentship.
The work of the fifth author was supported by an
NSERC USRA grant.
REFERENCES
Anton, C. and Smith, I. (2024a). Model-based clus-
tering of functional data via mixtures of t distribu-
tions. Advances in Data Analysis and Classification,
18(3):563–595.
Anton, C. and Smith, I. (2024b). A multivariate functional
data clustering method using parsimonious cluster
weighted models. In Theodore Chadjipadelis, Au-
rea Gran
´
e, J. T. and Villalobos, M., editors, Data
Science, Classification and Artificial Intelligence for
Modeling Decision Making, Studies in Classifica-
tion, Data Analysis, and Knowledge Organization.
Springer International Publishing. to appear.
Armstrong, J. J., Guimond, J., Sandals, L., Neufeld, B.,
Christie, N., Perry, S., John, J., Akintade, T., and
Bayne, S. (2022). Navigating the path forward for de-
mentia in Canada.
Bouveyron, C. and Jacques, J. (2011). Model-based clus-
tering of time series in group-specific functional sub-
spaces. Adv Data Anal Classif., 5(4):281–300.
Dang, U. J., Punzo, A., McNicholas, P. D., Ingrassia, S.,
and Browne, R. P. (2017). Multivariate response and
parsimony for Gaussian cluster-weighted models. J.
Classif., 34(1):4–34.
Dara, O. A., Lopez-Guede, J. M., Raheem, H. I., Ra-
hebi, J., Zulueta, E., and Fernandez-Gamiz, U.
(2023). Alzheimer’s Disease Diagnosis Using Ma-
chine Learning: A Survey. Applied Sciences, 13(14).
Delaigle, A. and Hall, P. (2010). Defining probability den-
sity for a distribution of random functions. Ann. Stat.,
38(2):1171–1193.
Jacques, J. and Preda, C. (2014). Model-based clustering
for multivariate functional data. Computational Statis-
tics & Data Analysis, 71:92–106.
Jahanshad, N., Kochunov, P., Sprooten, E., Mandl, R.,
Nichols, T., Almassy, L., Blangero, J., Brouwer, R.,
Curran, J., de Zubicaray, G., Duggirala, R., Fox, P.,
Hong, L., Landman, B., Martin, N., McMahon, K.,
Medland, S., Mitchell, B., Olvera, R., and Glahn, D.
(2013). Multi-site genetic analysis of diffusion images
and voxelwise heritability analysis: A pilot project of
the enigma-dti working group. NeuroImage, 81.
Kaur, A., Mittal, M., Bhatti, J. S., Thareja, S., and Singh, S.
(2024). A systematic literature review on the signif-
icance of deep learning and machine learning in pre-
dicting alzheimer’s disease. Artificial Intelligence in
Medicine, 154:102928.
Li, T., Song, X., Zhang, Y., Zhu, H., and Zhu, Z.
(2021). Clusterwise functional linear regression
models. Computational Statistics & Data Analysis,
158:107192.
Ma, H., Li, T., Zhu, H., and Zhu, Z. (2019). Quantile regres-
sion for functional partially linear model in ultra-high
dimensions. Computational Statistics & Data Analy-
sis, 129:135–147.
Nir, T. M., Jahanshad, N., Villalon-Reina, J. E., Toga,
A. W., Jack, C. R., Weiner, M. W., and Thompson,
P. M. (2013). Effectiveness of regional DTI measures
in distinguishing Alzheimer’s disease, MCI, and nor-
mal aging. NeuroImage: Clinical, 3:180–195.
Oishi, K., Mielke, M. M., Albert, M., Lyketsos, C. G., and
Mori, S. (2011). DTI analyses and clinical applica-
tions in Alzheimer’s disease. Journal of Alzheimer’s
Disease, 26(s3):287–296.
Schmutz, A., Jacques, J., Bouveyron, C., Cheze, L., and
Martin, P. (2020). Clustering multivariate functional
data in group-specific functional subspaces. Comput.
Stat., 35:1101–1131.
Schouten, T., Koini, M., de Vos, F., Seiler, S., Rooij, M.,
Lechner, A., Schmidt, R., Heuvel, M., van der Grond,
J., and Rombouts, S. (2017). Individual Classification
of Alzheimer’s Disease with Diffusion Magnetic Res-
onance Imaging. NeuroImage, 152.
Schwarz, G. (1978). Estimating the dimension of a model.
Ann. Stat., pages 461–464.
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueck-
ert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E.,
Ciccarelli, O., Cader, M. Z., Matthews, P. M., and
Behrens, T. E. (2006). Tract-based spatial statistics:
Voxelwise analysis of multi-subject diffusion data.
NeuroImage, 31(4):1487–1505.
BIOIMAGING 2025 - 12th International Conference on Bioimaging
368