
Fluck, I. E., Baiser, B., Wolcheski, R., Chinniah, I., and
Record, S. (2024). 2018 neon ethanol-preserved
ground beetles.
Gibb, H., Johansson, T., Stenbacka, F., and Hj
¨
alt
´
en, J.
(2013). Functional roles affect diversity-succession
relationships for boreal beetles. PLoS One,
8(8):e72764.
Girshick, R. (2015). Fast r-cnn. arXiv preprint
arXiv:1504.08083.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580–587.
Goczał, J. (2023). Captain america without the shield: ely-
tra loss and the evolution of alternative defence strate-
gies in beetles. Zoomorphology, 142(2):131–136.
Goczał, J. and Beutel, R. G. (2023). Beetle elytra: evolu-
tion, modifications and biological functions. Biology
Letters, 19(3):20220559.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. (2019). Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 1314–1324.
Jun, K. (2023). Is vehicle plate corner prediction by vision
transformer better than cnns? Scientific Programming,
2023(1):4301632.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., et al. (2023). Segment anything. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4015–4026.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25.
Langhans, S. D. and Tockner, K. (2014). Edge effects are
important in supporting beetle biodiversity in a gravel-
bed river floodplain. PloS one, 9(12):e114415.
Law, H. and Deng, J. (2018). Cornernet: Detecting objects
as paired keypoints. In Proceedings of the European
conference on computer vision (ECCV), pages 734–
750.
Le, V.-L., Beurton-Aimar, M., Zemmari, A., Marie, A.,
and Parisey, N. (2020). Automated landmarking for
insects morphometric analysis using deep neural net-
works. Ecological Informatics, 60:101175.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., Van Der Laak, J. A.,
Van Ginneken, B., and S
´
anchez, C. I. (2017). A survey
on deep learning in medical image analysis. Medical
image analysis, 42:60–88.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierar-
chical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 10012–10022.
Ramirez, M. and Campolongo, E. G. (2024). 2018 NEON
Ethanol-preserved Ground Beetles Processing.
Redmon, J. (2016). You only look once: Unified, real-time
object detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition.
Reis, D., Kupec, J., Hong, J., and Daoudi, A. (2023).
Real-time flying object detection with yolov8. arXiv
preprint arXiv:2305.09972.
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster
r-cnn: Towards real-time object detection with re-
gion proposal networks. IEEE transactions on pattern
analysis and machine intelligence, 39(6):1137–1149.
Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
815–823.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014).
Deepface: Closing the gap to human-level perfor-
mance in face verification. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1701–1708.
Tan, M. and Le, Q. (2021). Efficientnetv2: Smaller mod-
els and faster training. In International conference on
machine learning, pages 10096–10106. PMLR.
Yoo, H. and Jun, K. (2020). Deep homography for license
plate detection. Information, 11(4):221.
Yoo, H. and Jun, K. (2021). Deep corner prediction to rec-
tify tilted license plate images. Multimedia Systems,
27(4):779–786.
Zhao, X., Yu, Y., Clapham, M. E., Yan, E., Chen, J., Jarzem-
bowski, E. A., Zhao, X., and Wang, B. (2021). Early
evolution of beetles regulated by the end-permian de-
forestation. Elife, 10:e72692.
Efficient CNN-Based System for Automated Beetle Elytra Coordinates Prediction
941