
Hierarchical Deep-Fusion Learning Network.
Proceedings Copyright, 381, 388.
Fidas, C. A., & Lyras, D. (2023). A review of EEG-based
user authentication: trends and future research
directions. IEEE Access, 11, 22917-22934.
Gao, Y., Fu, X., Ouyang, T., & Wang, Y. (2022). EEG-
GCN: spatio-temporal and self-adaptive graph
convolutional networks for single and multi-view EEG-
based emotion recognition. IEEE Signal Processing
Letters, 29, 1574-1578.
Gopal, S. R. K., & Shukla, D. (2021, August). Concealable
biometric-based continuous user authentication system
an EEG induced deep learning model. In 2021 IEEE
International Joint Conference on Biometrics
(IJCB) (pp. 1-8). IEEE.
Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., ... &
Li-wei, H. L. (2021). Multi-view spatial-temporal
graph convolutional networks with domain
generalization for sleep stage classification. IEEE
Transactions on Neural Systems and Rehabilitation
Engineering, 29, 1977-1986.
Khosla, A., Khandnor, P., & Chand, T. (2020). A
comparative analysis of signal processing and
classification methods for different applications based
on EEG signals. Biocybernetics and Biomedical
Engineering, 40(2), 649-690.
Kuncheva, L. I. (2014). Combining pattern classifiers:
methods and algorithms. John Wiley & Sons.
Mane, R., Robinson, N., Vinod, A. P., Lee, S. W., & Guan,
C. (2020, July). A multi-view CNN with novel variance
layer for motor imagery brain computer interface. In
2020 42nd annual international conference of the IEEE
engineering in medicine & biology society (EMBC)
(pp. 2950-2953). IEEE.
Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J.,
Sabuncu, M. R., ... & Liu, H. (2013). Individual
variability in functional connectivity architecture of the
human brain. Neuron, 77(3), 586-595.
Nakamura, T., Goverdovsky, V., & Mandic, D. P. (2017).
In-ear EEG biometrics for feasible and readily
collectable real-world person authentication. IEEE
Transactions on Information Forensics and
Security, 13(3), 648-661.
Oh, S. L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R.,
Arunkumar, N., Murugappan, M., & Acharya, U. R.
(2020). A deep learning approach for Parkinson’s
disease diagnosis from EEG signals. Neural Computing
and Applications, 32, 10927-10933.
Oztemel, M. E., & Soysal, Ö. M. (2024, April). Effect of
Signal Conditioning and Evoked-Potential Based
Representation on Stability and Distinctiveness of EEG
Brain Signatures. In 2024 12th International
Symposium on Digital Forensics and Security
(ISDFS) (pp. 1-7). IEEE.
Qi, H., Xue, Y., Xu, L., Cao, Y., & Jiao, X. (2018). A
speedy calibration method using Riemannian geometry
measurement and other-subject samples on a P300
speller. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 26(3), 602-608.
Plucińska, R.; Jędrzejewski, K.; Malinowska, U.; Rogala, J.
Leveraging Multiple Distinct EEG Training Sessions
for Improvement of Spectral-Based Biometric
Verification Results. Sensors 2023, 23, 2057.
Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C., &
Ruffini, G. (2007). Unobtrusive biometric system based
on electroencephalogram analysis. EURASIP Journal
on Advances in Signal Processing, 2008, 1-8.
Spyrou, L., Kouchaki, S., & Sanei, S. (2015, September).
Multiview classification of brain data through tensor
factorisation. In 2015 IEEE 25th international
workshop on Machine Learning for Signal Processing
(MLSP) (pp. 1-6). IEEE.
Tian, C., Ma, Y., Cammon, J., Fang, F., Zhang, Y., & Meng,
M. (2023). Dual-encoder VAE-GAN with
spatiotemporal features for emotional EEG data
augmentation. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 31, 2018-2027.
Waytowich, N. R., Lawhern, V. J., Bohannon, A. W., Ball,
K. R., & Lance, B. J. (2016). Spectral transfer learning
using information geometry for a user-independent
brain-computer interface. Frontiers in neuroscience, 10,
430.
Weng, W., Gu, Y., Guo, S., Ma, Y., Yang, Z., Liu, Y., &
Chen, Y. (2024). Self-supervised Learning for
Electroencephalogram: A Systematic Survey. arXiv
preprint arXiv:2401.05446.
Wu, D., Lawhern, V. J., Hairston, W. D., & Lance, B. J.
(2016). Switching EEG headsets made easy: Reducing
offline calibration effort using active weighted
adaptation regularization. IEEE Transactions on
Neural Systems and Rehabilitation
Engineering, 24(11), 1125-1137.
Wu, D., Xu, Y., & Lu, B. L. (2020). Transfer learning for
EEG-based brain–computer interfaces: A review of
progress made since 2016. IEEE Transactions on
Cognitive and Developmental Systems, 14(1), 4-19.
Xu, C., Tao, D., & Xu, C. (2013). A survey on multi-view
learning. arXiv preprint arXiv:1304.5634.
Yao, J., & Motani, M. (2018). Deep spatio-temporal feature
learning using AEs.
Zhao, M., Gao, H., Wang, W., & Qu, J. (2020). Research
on human-computer interaction intention recognition
based on EEG and eye movement. IEEE Access, 8,
145824-145832.
Zhou, T., & Wang, S. (2024). Spatio-Temporal Adaptive
Diffusion Models for EEG Super-Resolution in
Epilepsy Diagnosis. arXiv preprint arXiv:2407.03089.
Effectiveness of Cross-Model Learning Through View-Model Ensemble on Detection of Spatiotemporal EEG Patterns
949