
Garrell, A., Villamizar, M., Moreno-Noguer, F., and San-
feliu, A. (2017). Teaching robot’s proactive behavior
using human assistance. International Journal of So-
cial Robotics, 9(2):231–249.
Gasteiger, N., Hellou, M., Lim, J. Y., MacDonald, B., and
Ahn, H. S. (2023). A theoretical approach to design-
ing interactive robots, using restaurant assistants as an
example. In 2023 20th International Conference on
Ubiquitous Robots (UR), pages 980–985.
Grau, A., Indri, M., Lo Bello, L., and Sauter, T. (2021).
Robots in industry: The past, present, and future of a
growing collaboration with humans. IEEE Industrial
Electronics Magazine, 15(1):50–61.
Kanda, T., Glas, D. F., Shiomi, M., and Hagita, N. (2009a).
Abstracting people’s trajectories for social robots to
proactively approach customers. IEEE Transactions
on Robotics, 25(6):1382–1396.
Kanda, T., Shiomi, M., Miyashita, Z., Ishiguro, H., and
Hagita, N. (2009b). An affective guide robot in a
shopping mall. In 4th ACM/IEEE Intl Conference on
Human-Robot Interaction (HRI), pages 173–180.
McCann, H. J. and Bratman, M. E. (1991). Intention, plans,
and practical reason. No
ˆ
us, 25(2):230.
Molina, J., Sierra Mar
´
ın, S., Munera, M., and Cifuentes G.,
C. (2018). Human robot interaction interface for a mo-
bility assistance device. In 1st International Seminar
on Rehabilitation and Assistive Robotics RAR2018.
Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G.,
Puigb
`
o, J.-Y., Pattacini, U., and ... (2018). Dac-h3: A
proactive robot cognitive architecture to acquire and
express knowledge about the world and the self. IEEE
Transactions on Cognitive and Developmental Sys-
tems, 10:1005–1022.
Njifenjou, A., Sucal, V., Jabaian, B., and Lef
`
evre, F. (2024).
Role-play zero-shot prompting with llms for open-
domain human-machine conversation.
Prescott, T., Camilleri, D., Martinez-Hernandez, U., Dami-
anou, A., and Lawrence, N. (2019a). Memory and
mental time travel in humans and social robots. Philo-
sophical Transactions B: Biological Sciences, 374.
Prescott, T. J., Camilleri, D., Martinez-Hernandez, U.,
Damianou, A., and Lawrence, N. D. (2019b). Mem-
ory and mental time travel in humans and social
robots. Philos. Trans. R. Soc. Lond. B Biol. Sci.,
374(1771):20180025.
Romero-Garc
´
es, A., Calderita, L. V., Mart
´
ınez-G
´
omez, J.,
Bandera, J. P., and Marfil, R. (2015). Testing a fully
autonomous robotic salesman in real scenarios. In
2015 IEEE International Conference on Autonomous
Robot Systems and Competitions, pages 124–130.
Rossi, A., Maro, M. D., Origlia, A., Palmiero, A., and
Rossi, S. (2022). A ros architecture for personalised
hri with a bartender social robot.
Salomon, R. (1997). Scaling behavior of the evolution strat-
egy when evolving neuronal control architectures for
autonomous agents. In Angeline, P. J., Reynolds,
R. G., McDonnell, J. R., and Eberhart, R., editors,
Evolutionary Programming VI, pages 47–57, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Shiomi, M., Sakamoto, D., Kanda, T., Ishi, C. T., Ishiguro,
H., and Hagita, N. (2011). Field trial of a networked
robot at a train station. International Journal of Social
Robotics, 3(1):27–40.
Tek
¨
ulve, J., Fois, A., Sandamirskaya, Y., and Sch
¨
oner, G.
(2019). Autonomous sequence generation for a neu-
ral dynamic robot: Scene perception, serial order,
and object-oriented movement. Frontiers in Neuro-
robotics, 13.
Verschure, P. F. M. J., Pennartz, C. M. A., and Pezzulo,
G. (2014). The why, what, where, when and how
of goal-directed choice: neuronal and computational
principles. Philos. Trans. R. Soc. Lond. B Biol. Sci.,
369(1655):20130483.
Verschure, P. F. M. J., Voegtlin, T., and Douglas, R. J.
(2003). Environmentally mediated synergy between
perception and behaviour in mobile robots. Nature,
425(6958):620–624.
Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2022).
Yolov7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric.
FlowAct: A Proactive Multimodal Human-Robot Interaction System with Continuous Flow of Perception and Modular Action Sub-Systems
779