
In ESANN 2013 proceedings, European Symposium
on Artificial Neural Networks, Computational Intel-
ligence and Machine Learning. Bruges (Belgium).
i6doc.com.
Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchin-
son, L., Kam-Thong, T., Siebourg-Polster, J., Steiert,
B., and Zhang, J. D. (2020). An introduction to ma-
chine learning. Clinical Pharmacology & Therapeu-
tics, 107(4):871–885.
Bakker, A. B. and de Vries, J. D. (2021). Job de-
mands–resources theory and self-regulation: new ex-
planations and remedies for job burnout. Anxiety,
Stress, & Coping, 34(1):1–21.
Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M.,
Pomares, H., Rojas, I., Saez, A., and Villalonga, C.
(2014). mhealthdroid: A novel framework for agile
development of mobile health applications. In Ambi-
ent Assisted Living and Daily Activities, pages 91–98.
Springer International Publishing.
Barandas, M., Folgado, D., Fernandes, L., Santos, S.,
Abreu, M., Bota, P., Liu, H., Schultz, T., and Gam-
boa, H. (2020). Tsfel: Time series feature extraction
library. SoftwareX, 11.
Biernacki, C., Celeux, G., and Govaert, G. (2000). Assess-
ing a mixture model for clustering with the integrated
completed likelihood. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(7):719–725.
Dentamaro, V., Gattulli, V., Impedovo, D., and Manca, F.
(2024). Human activity recognition with smartphone-
integrated sensors: A survey. Expert Systems with Ap-
plications, 246.
European Agency for Safety and Health at Work, Kok, J.,
Vroonhof, P., Snijders, J., Roullis, G., Clarke, M.,
Peereboom, K., Dorst, P., and Isusi, I. (2019). Work-
related musculoskeletal disorders – Prevalence, costs
and demographics in the EU. Publications Office.
European Agency for Safety and Health at Work, Zwaan,
L., Oldenburg, C., Emmerik, M., Eekhout, I., Heuvel,
S., Janowsk, P., Dam, L., Oude-Hengel, K., Br
¨
uck,
C., and Wilhelm, C. (2017). Estimating the cost of
work-related accidents and ill-health – An analysis of
European data sources. Publications Office.
European Commission and Directorate-General for Re-
search and Innovation (2021). Horizon Europe strate-
gic plan 2021-2024. Publications Office of the Euro-
pean Union.
He, Y. (2024). Imbalanced data clustering using equilibrium
k-means. arXiv preprint arXiv:2402.14490.
Hermens, H. J., Freriks, B., Disselhorst-Klug, C., and Rau,
G. (2000). Development of recommendations for
semg sensors and sensor placement procedures. Jour-
nal of Electromyography and Kinesiology, 10(5):361–
374.
Ige, A. O. and Mohd Noor, M. H. (2022). A survey on un-
supervised learning for wearable sensor-based activity
recognition. Applied Soft Computing, 127.
Jobanputra, C., Bavishi, J., and Doshi, N. (2019). Human
activity recognition: A survey. Procedia Computer
Science, 155:698–703.
Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in
Data: An Introduction To Cluster Analysis.
Kwon, Y., Kang, K., and Bae, C. (2014). Unsupervised
learning for human activity recognition using smart-
phone sensors. Expert Systems with Applications,
41(14):6067–6074.
Machado., I., Gomes., R., Gamboa., H., and Paix
˜
ao.,
V. (2014). Human activity recognition from triax-
ial accelerometer data - feature extraction and selec-
tion methods for clustering of physical activities. In
Proceedings of the International Conference on Bio-
inspired Systems and Signal Processing (BIOSTEC
2014) - BIOSIGNALS, pages 155–162. INSTICC,
SciTePress.
Mejia-Ricart, L. F., Helling, P., and Olmsted, A. (2017).
Evaluate action primitives for human activity recog-
nition using unsupervised learning approach. In 2017
12th International Conference for Internet Technology
and Secured Transactions (ICITST), pages 186–188.
Oliosi, E., Probst, P., Rodrigues, J., Silva, L., Zagalo, D.,
Cepeda, C., and Gamboa, H. (2023). Week-long mul-
timodal data acquisition of occupational risk factors
in public administration workers. In 2023 19th Inter-
national Conference on Intelligent Environments, IE
2023 - Proceedings. IEEE.
Owen, N., Healy, G. N., Dempsey, P. C., Salmon, J., Tim-
perio, A., Clark, B. K., Goode, A. D., Koorts, H.,
Ridgers, N. D., Hadgraft, N. T., Lambert, G., Eakin,
E. G., Kingwell, B. A., and Dunstan, D. W. (2020).
Sedentary behavior and public health: Integrating the
evidence and identifying potential solutions. Annual
Review of Public Health, 41:265–287.
Park, J., Moon, J., Kim, H., Kong, M., and Oh, Y. (2020).
Sedentary lifestyle: Overview of updated evidence
of potential health risks. Korean Journal of Family
Medicine, 41:365–373.
Punnett, L. and Wegman, D. H. (2004). Work-related mus-
culoskeletal disorders: the epidemiologic evidence
and the debate. Journal of Electromyography and Ki-
nesiology, 14(1):13–23.
Srinivasan, D. and Mathiassen, S. E. (2012). Motor vari-
ability - an important issue in occupational life. In
Work, volume 41, pages 2527–2534.
Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S.,
Kjærgaard, M. B., Dey, A., Sonne, T., and Jensen,
M. M. (2015). Smart devices are different: Assess-
ing and mitigatingmobile sensing heterogeneities for
activity recognition. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems,
page 127–140. Association for Computing Machin-
ery.
Zerguine, H., Healy, G. N., Goode, A. D., Zischke, J., Ab-
bott, A., Gunning, L., and Johnston, V. (2023). On-
line office ergonomics training programs: A scoping
review examining design and user-related outcomes.
Safety Science, 158.
Effects of Class Imbalance in Unsupervised Human Activity Recognition for Office Work Task Characterization
995