
Dey, A. K. (2023). Chatgpt in diabetes care: An overview
of the evolution and potential of generative artificial
intelligence model like chatgpt in augmenting clini-
cal and patient outcomes in the management of dia-
betes. International Journal of Diabetes and Technol-
ogy, 2(2):66–72.
Dhole, K. D., Chandradevan, R., and Agichtein, E.
(2024). Generative query reformulation using ensem-
ble prompting, document fusion, and relevance feed-
back. arXiv preprint arXiv:2405.17658.
Ellahham, S. (2020). Artificial intelligence: The future for
diabetes care. The American Journal of Medicine,
133(8):895–900.
Es, S., James, J., Espinosa-Anke, L., and Schockaert, S.
(2023). Ragas: Automated evaluation of retrieval aug-
mented generation.
Holt, R. I., DeVries, J. H., Hess-Fischl, A., Hirsch, I. B.,
Kirkman, M. S., Klupa, T., Ludwig, B., Nørgaard, K.,
Pettus, J., Renard, E., et al. (2021). The management
of type 1 diabetes in adults. a consensus report by the
american diabetes association (ada) and the european
association for the study of diabetes (easd). Diabetes
care, 44(11):2589–2625.
Hussain, S. and Athula, G. (2018). Extending a conven-
tional chatbot knowledge base to external knowledge
source and introducing user based sessions for dia-
betes education. In 32nd international conference
on advanced information networking and applications
workshops (WAINA), pages 698–703. IEEE.
Katsarou, A., Gudbj
¨
ornsdottir, S., Rawshani, A., Dabelea,
D., Bonifacio, E., Anderson, B. J., Jacobsen, L. M.,
Schatz, D. A., and Lernmark,
˚
A. (2017). Type 1
diabetes mellitus. Nature reviews Disease primers,
3(1):1–17.
Mandal, A., Khan, I. K., and Kumar, P. S. (2019). Query
rewriting using automatic synonym extraction for e-
commerce search. In eCOM@ SIGIR.
Martos-Cabrera, M. B., Membrive-Jim
´
enez, M. J.,
Suleiman-Martos, N., Mota-Romero, E., Ca
˜
nadas-
De la Fuente, G. A., G
´
omez-Urquiza, J. L., and Al-
bend
´
ın-Garc
´
ıa, L. (2020). Games and health educa-
tion for diabetes control: a systematic review with
meta-analysis. Healthcare, 8(4):399.
Mash, R., Schouw, D., and Fischer, A. E. (2022). Evalu-
ating the implementation of the great4diabetes what-
sapp chatbot to educate people with type 2 diabetes
during the covid-19 pandemic: convergent mixed
methods study. JMIR diabetes, 7(2):e37882.
Montagna, S., Ferretti, S., Klopfenstein, L. C., Florio, A.,
and Pengo, M. F. (2023). Data decentralisation of
llm-based chatbot systems in chronic disease self-
management. In Proceedings of the 2023 ACM Con-
ference on Information Technology for Social Good,
pages 205–212.
Nassar, C. M., Dunlea, R., Montero, A., Tweedt, A., and
Magee, M. F. (2023). Feasibility and preliminary be-
havioral and clinical efficacy of a diabetes education
chatbot pilot among adults with type 2 diabetes. Jour-
nal of Diabetes Science and Technology.
Navickas, R., Petric, V.-K., Feigl, A. B., and Seychell, M.
(2016). Multimorbidity: what do we know? what
should we do? Journal of comorbidity, 6(1):4–11.
Norris, J. M., Johnson, R. K., and Stene, L. C. (2020). Type
1 diabetes—early life origins and changing epidemiol-
ogy. The lancet Diabetes & endocrinology, 8(3):226–
238.
Nwokolo, M. and Hovorka, R. (2023). The artificial pan-
creas and type 1 diabetes. The Journal of Clinical En-
docrinology & Metabolism, 108(7):1614–1623.
Palanichamy, H. (2022). Contouring a user centered chatbot
for diabetes mellitus. International Journal of High
School Research, 4(4).
Perkins, B. A., Sherr, J. L., and Mathieu, C. (2021).
Type 1 diabetes glycemic management: Insulin ther-
apy, glucose monitoring, and automation. Science,
373(6554):522–527.
Pienkowska, A., Ang, C.-S., Mammadova, M., Mahadzir,
M. D. A., Car, J., et al. (2023). A diabetes education
app for people living with type 2 diabetes: Co-design
study. JMIR Formative Research, 7(1):e45490.
Primavera, M., Giannini, C., and Chiarelli, F. (2020). Pre-
diction and prevention of type 1 diabetes. Frontiers in
endocrinology, 11:248.
Rosengren, A. and Dikaiou, P. (2023). Cardiovascular out-
comes in type 1 and type 2 diabetes. Diabetologia,
66(3):425–437.
Roychowdhury, S., Soman, S., Ranjani, H. G., Gunda, N.,
Chhabra, V., and Bala, S. K. (2024). Evaluation of rag
metrics for question answering in the telecom domain.
In ICML 2024 Workshop on Foundation Models in the
Wild.
Sagstad, M. H., Morken, N.-H., Lund, A., Dingsør,
L. J., Nilsen, A. B. V., and Sorbye, L. M. (2022).
Quantitative user data from a chatbot developed for
women with gestational diabetes mellitus: observa-
tional study. JMIR Formative Research, 6(4):e28091.
Sheng, B., Guan, Z., Lim, L.-L., Jiang, Z., Mathioudakis,
N., Li, J., Liu, R., Bao, Y., Bee, Y. M., Wang, Y.-
X., et al. (2024). Large language models for diabetes
care: Potentials and prospects. Science Bulletin, pages
S2095–9273.
Shiraishi, M., Lee, H., Kanayama, K., Moriwaki, Y., and
Okazaki, M. (2024). Appropriateness of artificial
intelligence chatbots in diabetic foot ulcer manage-
ment. The International Journal of Lower Extremity
Wounds, page 15347346241236811.
Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K.,
Gutierrez, L., Tan, T. F., and Ting, D. S. W. (2023).
Large language models in medicine. Nature medicine,
29(8):1930–1940.
Wang, L., Yang, N., and Wei, F. (2023). Query2doc: Query
expansion with large language models. In The 2023
Conference on Empirical Methods in Natural Lan-
guage Processing.
Yang, H., Li, J., Liu, S., Du, L., Liu, X., Huang, Y., Shi, Q.,
and Liu, J. (2023). Exploring the potential of large
language models in personalized diabetes treatment
strategies. medRxiv, pages 2023–06.
Ye, F., Fang, M., Li, S., and Yilmaz, E. (2023). Enhancing
conversational search: Large language model-aided
informative query rewriting. In The 2023 Conference
on Empirical Methods in Natural Language Process-
ing.
D-Care: A Multi-Tone LLM-Based Chatbot Assistant for Diabetes Patients
773