
Figure 3: RMSE and MAE comparison for the regression datasets. The x-axis is displayed in log scale to better highlight
differences between the values.
REFERENCES
Arag
˜
ao, M. V. C., Afonso, A. G., and Ferraz, R. C. (2023).
A practical evaluation of automl tools for binary, mul-
ticlass, and multilabel classification. TechRxiv.
Blohm, M., Hanussek, M., and Kintz, M. (2020). Lever-
aging automated machine learning for text classifica-
tion: Evaluation of automl tools and comparison with
human performance. In Proc. Int. Conf. Agents Artif.
Intell.
Doke, A. and Gaikwad, M. (2021). Survey on automated
machine learning (automl) and meta learning. In Proc.
2021 12th Int. Conf. Comput. Commun. Netw. Tech-
nol. (ICCCNT), pages 1–5, Kharagpur, India.
Eldeeb, H., Maher, M., Elshawi, R., and Sakr, S. (2024).
Automlbench: A comprehensive experimental evalu-
ation of automated machine learning frameworks. Ex-
pert Syst. Appl., 243.
Elshawi, R., Maher, M., and Sakr, S. (2019). Automated
machine learning: State-of-the-art and open chal-
lenges. arXiv preprint arXiv:1906.02287.
Ferreira, L., Pilastri, A., Martins, C. M., Pires, P. M., and
Cortez, P. (2021). A comparison of automl tools for
machine learning, deep learning and xgboost. In Proc.
2021 Int. Joint Conf. Neural Netw. (IJCNN), pages 1–
8, Shenzhen, China.
Gijsbers, P., Bueno, M. L. P., Coors, S., LeDell, E., Poirier,
S., Thomas, J., Bischl, B., and Vanschoren, J. (2024).
Amlb: An automl benchmark. J. Mach. Learn. Res.,
25:1–65.
Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B.,
and Vanschoren, J. (2019). An open source automl
benchmark. arXiv preprint arXiv:1907.00909.
Hanussek, M., Blohm, M., and Kintz, M. (2021). Can
automl outperform humans? an evaluation on pop-
ular openml datasets using automl benchmark. In
Proc. 2020 2nd Int. Conf. Artif. Intell. Robot. Control
(AIRC’20), pages 29–32, Cairo, Egypt.
Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L.,
Zhai, C., and Veeramachaneni, K. (2022). Automl to
date and beyond: Challenges and opportunities. ACM
Comput. Surv., 54(8):Art. 175.
Majidi, F., Openja, M., Khomh, F., and Li, H. (2022). An
empirical study on the usage of automated machine
learning tools. In Proc. 2022 IEEE Int. Conf. Software
Maintenance and Evolution (ICSME), pages 59–70,
Limassol, Cyprus.
Mumuni, A. and Mumuni, F. (2024). Automated data pro-
cessing and feature engineering for deep learning and
big data applications: A survey. Journal of Informa-
tion and Intelligence.
Narayanan, A. N., Das, S. S., and Mirnalinee, T. T.
(2023). Evaluation of automl frameworks for compu-
tational admet screening in drug discovery & devel-
opment. In Proc. 2023 IEEE Int. Conf. Bioinformat-
ics Biomedicine (BIBM), pages 4929–4931, Istanbul,
Turkiye.
Paladino, L. M., Hughes, A., Perera, A., Topsakal, O., and
Akinci, T. C. (2023). Evaluating the performance of
automated machine learning (automl) tools for heart
disease diagnosis and prediction. AI, 4(4):1036–1058.
Truong, A. T., Walters, A., Goodsitt, J., Hines, K. E., Bruss,
B., and Farivar, R. (2019). Towards automated ma-
chine learning: Evaluation and comparison of automl
approaches and tools. In Proc. 2019 IEEE 31st Int.
Conf. Tools Artif. Intell. (ICTAI), pages 1471–1479.
Urbanowicz, R. J., Bandhey, H., and Keenan, B. T.
(2023). Streamline: An automated machine learning
pipeline for biomedicine applied to examine the util-
ity of photography-based phenotypes for osa predic-
tion across international sleep centers. arXiv preprint
arXiv:2312.05461.
Zhong, Y., Yang, C., Su, X., Li, B., Huang, X., and Shuai,
Y. (2024). Review on research of automated machine
learning. In Proc. 2023 7th Int. Conf. Comput. Sci.
Artif. Intell. (CSAI
´
23), pages 526–532. Association
for Computing Machinery, New York, NY, USA.
Z
¨
oller, M.-A. and Huber, M. F. (2019). Benchmark and
survey of automated machine learning frameworks. J.
Artif. Intell. Res., 70:409–472.
A Survey of Evaluating AutoML and Automated Feature Engineering Tools in Modern Data Science
225