
de Aperfeic¸oamento de Pessoal de N
´
ıvel Superior -
Brasil (CAPES).
REFERENCES
Amorim, W. P., Falc
˜
ao, A. X., Papa, J. P., and Car-
valho, M. H. (2016). Improving semi-supervised learn-
ing through optimum connectivity. Pattern Recognition,
60:72–85.
Anghinoni, L., Zhu, Y.-t., Ji, D., and Zhao, L. (2023).
Transgnn: A transductive graph neural network with
graph dynamic embedding. In 2023 International Joint
Conference on Neural Networks (IJCNN), pages 1–8.
Bai, S., Zhang, F., and Torr, P. H. S. (2019). Hyper-
graph convolution and hypergraph attention. CoRR,
abs/1901.08150.
Benato, B. C., Telea, A. C., and Falcao, A. X.
(2024). Pseudo Labeling and Classification of High-
Dimensional Data using Visual Analytics. PhD thesis,
Utrecht University.
Bianchi, F. M., Grattarola, D., Livi, L., and Alippi, C.
(2019). Graph neural networks with convolutional
ARMA filters. CoRR, abs/1901.01343.
Breve, F. and Fischer, C. N. (2020). Visually impaired aid
using convolutional neural networks, transfer learning,
and particle competition and cooperation. In 2020 Inter-
national Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE.
Breve, F., Zhao, L., Quiles, M., Pedrycz, W., and Liu,
J. (2012). Particle competition and cooperation in net-
works for semi-supervised learning. IEEE Transactions
on Knowledge and Data Engineering, 24(9):1686 –1698.
Cai, H., Zheng, V. W., and Chang, K. C. (2018). A com-
prehensive survey of graph embedding: Problems, tech-
niques, and applications. IEEE Trans. Knowl. Data Eng.,
30(9):1616–1637.
Damrich, S., B
¨
ohm, J. N., Hamprecht, F. A., and Kobak,
D. (2022). Contrastive learning unifies t-sne and UMAP.
CoRR, abs/2206.01816.
Ghojogh, B., Ghodsi, A., Karray, F., and Crowley, M.
(2021). Uniform manifold approximation and projection
(umap) and its variants: Tutorial and survey.
Giles, C. L., Bollacker, K. D., and Lawrence, S. (1998).
Citeseer: An automatic citation indexing system. In Pro-
ceedings of the Third ACM Conference on Digital Li-
braries, DL ’98, pages 89–98.
Hinton, G. E. and Roweis, S. (2002). Stochastic neighbor
embedding. In Becker, S., Thrun, S., and Obermayer,
K., editors, Advances in Neural Information Processing
Systems, volume 15. MIT Press.
Jolliffe, I. and Springer-Verlag (2002). Principal Compo-
nent Analysis. Springer Series in Statistics. Springer.
Kawai, V. A. S., Leticio, G. R., Valem, L. P., and Pedronette,
D. C. G. (2024). Neighbor embedding projection and
rank-based manifold learning for image retrieval. In
2024 37th SIBGRAPI Conference on Graphics, Patterns
and Images.
Kipf, T. N. and Welling, M. (2017). Semi-supervised classi-
fication with graph convolutional networks. In 5th Inter-
national Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings.
Klicpera, J., Bojchevski, A., and G
¨
unnemann, S. (2019a).
Predict then propagate: Graph neural networks meet
personalized pagerank. In International Conference on
Learning Representations, ICLR 2019.
Klicpera, J., Weißenberger, S., and G
¨
unnemann, S. (2019b).
Diffusion improves graph learning. In Advances in
Neural Information Processing Systems, NeurIPS 2019,
pages 13333–13345.
Leticio, G. R., Kawai, V. S., Valem, L. P., Pedronette, D.
C. G., and da S. Torres, R. (2024). Manifold informa-
tion through neighbor embedding projection for image
retrieval. Pattern Recognition Letters, 183:17–25.
Li, Q., Han, Z., and Wu, X. (2018). Deeper insights into
graph convolutional networks for semi-supervised learn-
ing. In McIlraith, S. A. and Weinberger, K. Q., edi-
tors, Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), pages 3538–3545.
AAAI Press.
McCallum, S. K., Nigam, K., Rennie, J., and Seymore, K.
(2000). Automating the construction of internet portals
with machine learning. Information Retrieval, 3:127–
163.
McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for dimen-
sion reduction.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605.
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Li
`
o,
P., and Bengio, Y. (2018). Graph attention networks.
In 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings.
Wang, K., Ding, Y., and Han, S. C. (2024). Graph neural
networks for text classification: a survey. Artificial Intel-
ligence Review, 57(8).
Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. (2019). Simplifying graph convolutional net-
works. In International Conference on Machine Learn-
ing (ICML), volume 97, pages 6861–6871.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
526