
research on feature-based methods is needed to com-
press the memory bank more effectively.
REFERENCES
Bai, R., Wu, Z., and Xu, T. (2024). A lightweight camera
and lidar fusion framework for railway transit obsta-
cle detection. In Proceedings of the 2024 3rd Asia
Conference on Algorithms, Computing and Machine
Learning, pages 303–308.
Bischke, B., Helber, P., Folz, J., Borth, D., and Dengel, A.
(2019). Multi-task learning for segmentation of build-
ing footprints with deep neural networks. In 2019
IEEE International Conference on Image Processing
(ICIP), pages 1480–1484. IEEE.
Brucker, M., Cramariuc, A., Von Einem, C., Siegwart,
R., and Cadena, C. (2023). Local and global infor-
mation in obstacle detection on railway tracks. In
2023 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 9049–9056.
IEEE.
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A.,
Druzhinin, M., and Kalinin, A. A. (2020). Albumen-
tations: Fast and flexible image augmentations. Infor-
mation, 11(2).
Dosovitskiy, A. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Douillard, A., Chen, Y., Dapogny, A., and Cord, M.
(2021). Plop: Learning without forgetting for con-
tinual semantic segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 4040–4050.
Frankle, J. and Carbin, M. (2018). The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635.
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. (2018). Imagenet-
trained cnns are biased towards texture; increasing
shape bias improves accuracy and robustness. arXiv
preprint arXiv:1811.12231.
Guo, Q. (2024). A universal railway obstacle detection sys-
tem based on semi-supervised segmentation and opti-
cal flow. arXiv preprint arXiv:2406.18908.
Guo, Q., Chen, Y., Yao, Y., Zhang, T., and Ma, J. (2023).
A real-time chinese food auto billing system based on
instance segmentation. In 2023 IEEE Region 10 Sym-
posium (TENSYMP), pages 1–5. IEEE.
Hermann, K., Chen, T., and Kornblith, S. (2020). The ori-
gins and prevalence of texture bias in convolutional
neural networks. Advances in Neural Information
Processing Systems, 33:19000–19015.
Jin, X., Sadhu, A., Du, J., and Ren, X. (2021). Gradient-
based editing of memory examples for online task-free
continual learning. Advances in Neural Information
Processing Systems, 34:29193–29205.
Jocher, G. (2020). Ultralytics yolov5.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierar-
chical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 10012–10022.
Prabhu, A., Torr, P. H., and Dokania, P. K. (2020). Gdumb:
A simple approach that questions our progress in con-
tinual learning. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, pages 524–540.
Springer.
Qu, H., Rahmani, H., Xu, L., Williams, B., and Liu,
J. (2021). Recent advances of continual learning
in computer vision: An overview. arXiv preprint
arXiv:2109.11369.
Rahman, F. U., Ahmed, M. T., Hasan, M. M., and Jahan,
N. (2022). Real-time obstacle detection over railway
track using deep neural networks. Procedia Computer
Science, 215:289–298.
RangiLyu (2021). Nanodet-plus: Super fast and high accu-
racy lightweight anchor-free object detection model.
https://github.com/RangiLyu/nanodet.
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster
r-cnn: Towards real-time object detection with re-
gion proposal networks. IEEE transactions on pattern
analysis and machine intelligence, 39(6):1137–1149.
Robins, A. (1995). Catastrophic forgetting, rehearsal and
pseudorehearsal. Connection Science, 7(2):123–146.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). Mobilenetv2: Inverted residu-
als and linear bottlenecks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4510–4520.
Sazara, C., Cetin, M., and Iftekharuddin, K. M. (2019). De-
tecting floodwater on roadways from image data with
handcrafted features and deep transfer learning. In
2019 IEEE intelligent transportation systems confer-
ence (ITSC), pages 804–809. IEEE.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626.
Si, C., Wang, X., Yang, X., and Shen, W. (2025). Tendency-
driven mutual exclusivity for weakly supervised incre-
mental semantic segmentation. In European Confer-
ence on Computer Vision, pages 37–54. Springer.
Wang, A., Chen, H., Liu, L., Chen, K., Lin, Z., Han, J.,
and Ding, G. (2024). Yolov10: Real-time end-to-end
object detection. arXiv preprint arXiv:2405.14458.
Wen, L., Peng, Y., Lin, M., Gan, N., and Tan, R. (2024).
Multi-modal contrastive learning for lidar point cloud
Enhancing Railway Obstacle Detection System Based on Incremental Learning
419