
In conclusion, the models developed are promis-
ing for anemia diagnosis but require further improve-
ment for precise detection of polycythemia.
Future work will focus on enriching the datasets
and extending the models to identify other diseases,
such as leukemia. Early diagnosis is critical to im-
proving recovery rates and preventing health deteri-
oration. This study lays the groundwork for imple-
menting automated diagnostic systems that could sig-
nificantly benefit populations with limited access to
healthcare services, contributing to enhanced man-
agement and treatment of hematological disorders.
REFERENCES
Ahmed, M., Seraj, R., and Islam, S. M. S. (2020). The
k-means algorithm: A comprehensive survey and per-
formance evaluation. Electronics, 9:1295.
Ahsan, M. M., Luna, S. A., and Siddique, Z. (2022).
Machine-learning-based disease diagnosis: A com-
prehensive review. In Healthcare, volume 10, page
541. MDPI.
Alsheref, F. K. and Gomaa, W. H. (2019). Blood diseases
detection using classical machine learning algorithms.
International Journal of Advanced Computer Science
and Applications, 10(7).
Bonaccorso, G. (2019). Hands-on unsupervised learning
with Python: implement machine learning and deep
learning models using Scikit-Learn, TensorFlow, and
more. books.google.com.
Cloud, G. (2023). Mlops: canalizaciones de automatizaci
´
on
y entrega continua en el aprendizaje autom
´
atico.
Deng, D. (2020). Dbscan clustering algorithm based on
density. 2020 7th international forum on electrical
. . . .
Deo, R. C. (2015). Machine learning in medicine. Circula-
tion, 132(20):1920–1930.
Gun
ˇ
car, G., Kukar, M., Notar, M., Brvar, M.,
ˇ
Cernel
ˇ
c, P.,
Notar, M., and Notar, M. (2018). An application of
machine learning to haematological diagnosis. Scien-
tific reports, 8(1):411.
Institute, N. H. G. R. (2024). Linfocito - glosario parlante
de t
´
erminos gen
´
omicos y gen
´
eticos. Accessed: 2024-
05-30.
Kesavaraj, G. and Sukumaran, S. (2013). A study on clas-
sification techniques in data mining. In 2013 fourth
international conference on computing, communica-
tions and networking technologies (ICCCNT), pages
1–7. IEEE.
Mansoori, A., Gohari, N. F., Etemad, L., and ... (2024).
White blood cell and platelet distribution widths
are associated with hypertension: data mining ap-
proaches. Hypertension . . . .
Mart
´
ınez, R. E. B., Ram
´
ırez, N. C., Mesa, H. G. A., Su
´
arez,
I. R., Trejo, M., Le
´
on, P. P., and Morales, S. L. B.
(2009).
´
Arboles de decisi
´
on como herramienta en el
diagn
´
ostico m
´
edico. Revista m
´
edica de la Universidad
Veracruzana, 9(2):19–24.
MedlinePlus (2022). Biblioteca nacional de medicina usa.
Consultado: 2024-05-30.
Meena, K., Tayal, D. K., Gupta, V., and Fatima, A. (2019a).
Using classification techniques for statistical analysis
of anemia. Artificial Intelligence in Medicine, 94:138–
152.
Meena, K., Tayal, D. K., Gupta, V., and Fatima, A. (2019b).
Using classification techniques for statistical analysis
of anemia. Artificial Intelligence in Medicine, 94:138–
152.
Noor, N. B., Anwar, M. S., and Dey, M. (2019). Compara-
tive study between decision tree, svm and knn to pre-
dict anaemic condition. In 2019 IEEE International
Conference on Biomedical Engineering, Computer
and Information Technology for Health (BECITH-
CON), pages 24–28.
Parthvi, A., Rawal, K., and Choubey, D. K. (2020). A
comparative study using machine learning and data
mining approach for leukemia. In 2020 International
Conference on Communication and Signal Processing
(ICCSP), pages 0672–0677.
Pascual, D., Pla, F., and S
´
anchez, S. (2007). Algoritmos
de agrupamiento. M
´
etodo Inform
´
aticos Avanzados,
pages 164–174.
Pincay, J. (2022). Computational Intelligence, pages 33–56.
Springer International Publishing, Cham.
Raschka, S. and Mirjalili, V. (2019). Python machine learn-
ing: Machine learning and deep learning with Python,
scikit-learn, and TensorFlow 2. books.google.com.
Schober, P. and Vetter, T. (2021). Logistic regression in
medical research. Anesthesia &Analgesia.
Wang, S.-C. (2003). Artificial Neural Network, pages 81–
100. Springer US, Boston, MA.
ICT4AWE 2025 - 11th International Conference on Information and Communication Technologies for Ageing Well and e-Health
232