
Lange, L., Schreieder, T., Christen, V., and Rahm,
E. (2023). Privacy at risk: Exploiting similari-
ties in health data for identity inference. CoRR,
abs/2308.08310.
Lee, W.-H., Liu, C., Ji, S., Mittal, P., and Lee, R. B.
(2017). Blind de-anonymization attacks using social
networks. In Proceedings of the 2017 on Workshop on
Privacy in the Electronic Society, pages 1–4.
Li, N., Li, T., and Venkatasubramanian, S. (2006).
t-closeness: Privacy beyond k-anonymity and l-
diversity. In 2007 IEEE 23rd international conference
on data engineering, pages 106–115. IEEE.
Lippert, C., Sabatini, R., Maher, M. C., Kang, E. Y., Lee,
S., et al. (2017). Identification of individuals by trait
prediction using whole-genome sequencing data. Pro-
ceedings of the National Academy of Sciences.
Liu, Y., Wan, Z., Xia, W., Kantarcioglu, M., Vorobeychik,
Y., Clayton, E. W., Kho, A., Carrell, D., and Malin,
B. A. (2018). Detecting the presence of an individual
in phenotypic summary data. In AMIA Annual Sym-
posium Proceedings, pages 760–769.
Lu, G., Li, K., Wang, X., Liu, Z., Cai, Z., and Li, W. (2024).
Neural-based inexact graph de-anonymization. High-
Confidence Computing, 4(1).
Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkita-
subramaniam, M. (2007). l-diversity: Privacy beyond
k-anonymity. Acm TKDD, 1(1):3–es.
Malin, B. and Sweeney, L. (2004). How (not) to pro-
tect genomic data privacy in a distributed network:
Using trail re-identification to evaluate and design
anonymity protection systems. Journal of Biomedical
Informatics, 37(3):179–192.
Min-Gu Kim, Hoon Ko, S. B. P. (2020). A study on user
recognition using 2d ecg based on ensemble of deep
convolutional neural networks. Journal of Ambient In-
telligence and Humanized Computing.
Mitchell, A. R. J., Ahlert, D., Brown, C., Birge, M., and
Gibbs, A. (2023). Electrocardiogram-based biomet-
rics for user identification – using your heartbeat as a
digital key. Journal of Electrocardiology, 80:1–6.
Narayanan, A. and Shmatikov, V. (2008). Robust de-
anonymization of large sparse datasets. In 2008 IEEE
Symposium on Security and Privacy. IEEE.
Nasr, M., Shokri, R., and Houmansadr, A. (2019). Compre-
hensive privacy analysis of deep learning: Passive and
active white-box inference attacks against centralized
and federated learning. In 2019 IEEE SP.
Prada, S. I., Gonz
´
alez-Mart
´
ınez, C., Borton, J., et al.
(2011). Avoiding disclosure of individually identifi-
able health information: a literature review. SAGE
Open, 1(3):2158244011431279.
Ravindra, V. and Grama, A. (2021). De-anonymization At-
tacks on Neuroimaging Datasets. In Proceedings of
the 2021 International Conference on Management of
Data, pages 2394–2398, Virtual Event China. ACM.
Regazzoni, F., Acs, G., Palmieri, P., et al. (2024). Secured
for health: Scaling up privacy to enable the integration
of the european health data space. In 2024 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), pages 1–4. IEEE.
Saxena, R., Arora, D., Nagar, V., and Chaurasia, B. K.
(2024). Blockchain transaction deanonymization us-
ing ensemble learning. Multimedia Tools and Appli-
cations, pages 1–30.
Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., and
Van Laerhoven, K. (2018). Introducing wesad, a mul-
timodal dataset for wearable stress and affect detec-
tion. In Proceedings of the 20th ACM ICMI, pages
400–408.
Shokri, R., Stronati, M., Song, C., and Shmatikov, V.
(2017). Membership inference attacks against ma-
chine learning models. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 3–18. IEEE.
Shringar-pure, S. S. and Bustamante, C. D. (2015). Pri-
vacy Risks from Genomic Data-Sharing Beacons. The
American Journal of Human Genetics, 97(5):631.
Sweeney, L. (1997). Weaving technology and policy to-
gether to maintain confidentiality. The Journal of Law,
Medicine & Ethics, 25(2-3):98–110, 82.
Sweeney, L. (2002). k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzzi-
ness, and Knowledge-Based Systems.
Thenen, N. V., Ayday, E., and Cicek, A. E. (2019).
Re-identification of individuals in genomic data-
sharing beacons via allele inference. Bioinformatics,
35(3):365–371.
U.S. Congress (1996). Health Insurance Portability and Ac-
countability Act of 1996 (HIPAA). Public Law 104-
191, 110 Stat. 1936.
Venkat-esaramani, R., Malin, B. A., and Vorobeychik, Y.
(2021). Re-identification of individuals in genomic
datasets using public face images. Science Advances,
7(47):eabg3296.
Wan, Z., Vorobeychik, Y., Xia, W., Liu, Y., et al. (2021).
Using game theory to thwart multistage privacy in-
trusions when sharing data. Science Advances,
7(50):eabe9986.
Wu, M., Zhang, X., Ding, J., Nguyen, H., Yu, R., Pan, M.,
and Wong, S. T. (2020). Evaluation of inference at-
tack models for deep learning on medical data. arXiv
preprint arXiv:2011.00177.
Yang, R., Ma, J., Miao, Y., and Ma, X. (2023). Privacy-
preserving generative framework for images against
membership inference attacks. IET Communications,
17(1):45–62.
Yin, H., Liu, Y., Li, Y., Guo, Z., and Wang, Y. (2023).
Defeating deep learning based de-anonymization at-
tacks with adversarial example. Journal of Network
and Computer Applications, 220.
Yoon, J., Drumright, L. N., and Van Der Schaar, M. (2020).
Anonymization through data synthesis using genera-
tive adversarial networks. IEEE J-BHI, 24(8).
Zhang, Z., Yan, C., and Malin, B. A. (2022). Membership
inference attacks against synthetic health data. Jour-
nal of Biomedical Informatics, 125:103977.
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
606