
of nonzero elements in the matrix E) can be set to a
lower value. The numerical results are promising, and
future studies of this work will focus on developing
the theoretical basis of the proposed approach.
ACKNOWLEDGEMENTS
This research was supported by the European
Union in the Framework of ERASMUS MUNDUS
project (CyberMACS) (https://www.cybermacs.eu)
under grant number 101082683.
REFERENCES
Al-Rubaie, M. and Chang, J. M. (2019). Privacy-preserving
machine learning: Threats and solutions. IEEE Secu-
rity & Privacy, 17(2):49–58.
Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps
for dimensionality reduction and data representation.
Neural computation, 15(6):1373–1396.
Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005).
Practical privacy: the sulq framework. In Proceedings
of the twenty-fourth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
128–138.
Bogdanov, D., Kamm, L., Laur, S., and Sokk, V. (2018).
Implementation and evaluation of an algorithm for
cryptographically private principal component analy-
sis on genomic data. IEEE/ACM transactions on com-
putational biology and bioinformatics, 15(5):1427–
1432.
Dwork, C., Roth, A., et al. (2014a). The algorith-
mic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–
4):211–407.
Dwork, C., Talwar, K., Thakurta, A., and Zhang, L.
(2014b). Analyze gauss: optimal bounds for privacy-
preserving principal component analysis. In Proceed-
ings of the forty-sixth annual ACM symposium on The-
ory of computing, pages 11–20.
Frederiksen, T. K., Nielsen, J. B., and Orlandi, C. (2015).
Privacy-free garbled circuits with applications to effi-
cient zero-knowledge. In Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pages 191–219. Springer.
Goldberger, J., Hinton, G. E., Roweis, S., and Salakhutdi-
nov, R. R. (2004). Neighbourhood components anal-
ysis. Advances in neural information processing sys-
tems, 17.
Golub, G. H. and Van Loan, C. F. (2013). Matrix computa-
tions. JHU press.
Hindistan, Y. S. and Yetkin, E. F. (2023). A hybrid approach
with gan and dp for privacy preservation of iiot data.
IEEE Access, 11:5837–5849.
Hongxia, W., Xiaohui, Y., and Ming, Y. (2016). Study
on predictive maintenance strategy. International
Journal of u-and e-Service, Science and Technology,
9(4):295–300.
Kung, S.-Y. (2017). Compressive privacy: From
information\/estimation theory to machine learning
[lecture notes]. IEEE Signal Processing Magazine,
34(1):94–112.
Li, X., Niu, J., Khan, M. K., and Wang, Z. (2013). Apply-
ing lu decomposition of matrices to design anonymity
bilateral remote user authentication scheme. Mathe-
matical Problems in Engineering, 2013(1):910409.
Loparo, K. (2012). Case western reserve university bear-
ing data center. Bearings Vibration Data Sets, Case
Western Reserve University, pages 22–28.
Merkle, R. C. (1978). Secure communications over insecure
channels. Communications of the ACM, 21(4):294–
299.
Raptis, T. P., Passarella, A., and Conti, M. (2019). Data
management in industry 4.0: State of the art and open
challenges. IEEE Access, 7:97052–97093.
Saufi, S. R., Isham, M. F., Ahmad, Z. A., and Hasan, M.
D. A. (2023). Machinery fault diagnosis based on
a modified hybrid deep sparse autoencoder using a
raw vibration time-series signal. Journal of Ambient
Intelligence and Humanized Computing, 14(4):3827–
3838.
Smith, W. A. and Randall, R. B. (2015). Rolling ele-
ment bearing diagnostics using the case western re-
serve university data: A benchmark study. Mechani-
cal systems and signal processing, 64:100–131.
Soveizi, N., Turkmen, F., and Karastoyanova, D. (2023).
Security and privacy concerns in cloud-based scien-
tific and business workflows: A systematic review.
Future Generation Computer Systems, 148:184–200.
Strang, G. (2000). Linear algebra and its applications.
Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(11).
Varshney, S., Sandhu, R., and Gupta, P. (2019). Qos based
resource provisioning in cloud computing environ-
ment: a technical survey. In Advances in Comput-
ing and Data Sciences: Third International Confer-
ence, ICACDS 2019, Ghaziabad, India, April 12–13,
2019, Revised Selected Papers, Part II 3, pages 711–
723. Springer.
Wagner, I. and Eckhoff, D. (2018). Technical privacy met-
rics: a systematic survey. ACM Computing Surveys
(Csur), 51(3):1–38.
Weinberger, K. Q. and Saul, L. K. (2009). Distance metric
learning for large margin nearest neighbor classifica-
tion. Journal of machine learning research, 10(2).
Yi, X., Paulet, R., Bertino, E., Yi, X., Paulet, R.,
and Bertino, E. (2014). Homomorphic encryption.
Springer.
ICISSP 2025 - 11th International Conference on Information Systems Security and Privacy
614