Diao, S., L uo, W., Hou, J., Lambo, R., Al-Kuhali,
H. A ., Zhao, H., Tian, Y., Xie, Y., Zaki, N., and
Qin, W. (2023). Deep multi-magnification similar-
ity learning for histopathological image classification.
IEEE Journal of Biomedical and Health Informatics,
27(3):1535–1545.
Gelasca, E. D., Byun, J., Obara, B., and Manjunath, B.
(2008). Evaluation and benchmark for biological im-
age segmentation. In 2008 15th IEEE International
Conference on Image Processing, pages 1816–1819.
IEEE.
Hosseini, V. R., Mehrizi, A. A., Gungor, A., and Afrouzi,
H. H. (2023). Application of a physics-informed neu-
ral network to solve the steady-state bratu equation
arising from solid biofuel combustion theory. Fuel,
332:125908.
Hu, Z., Zhang, J., and Ge, Y. (2021). Handling vanishing
gradient problem using artificial derivative. IEEE Ac-
cess, 9:22371–22377.
Ivanovici, M. and Richard, N. (2009). The lacunarity of
colour fractal images. In Image Processing (I CIP),
2009 16th IEEE International Conference on, pages
453–456. IEEE.
Ivanovici, M. and Richard, N. (2011). Fractal dimension
of color fractal images. IEEE Transactions on Image
Processing, 20(1):227–235.
Jahan, I., Ahmed, M. F., Ali, M. O., and Jang, Y. M. (2022).
Self-gated rectified linear unit for performance im-
provement of deep neural networks. ICT Express.
Kausar, T., Wang, M., Idrees, M., and Lu, Y. (2019). Hwd-
cnn: Multi-class recognition in breast histopathology
with haar wavelet decomposed image based convolu-
tion neural network. Biocybernetics and Biomedical
Engineering, 39(4):967–982.
Kononenko, I.,
ˇ
Simec, E., and Robnik-
ˇ
Sikonja, M. (1997).
Overcoming the myopia of inductive learning algo-
rithms with relieff. Applied Intelligence, 7(1):39–55.
Longo, L. H. d. C. , Roberto, G. F., Tosta, T. A., de Faria,
P. R. , Loyola, A. M., Cardoso, S. V., Silva, A. B.,
do Nascimento, M. Z., and Neves, L. A. (2023). Clas-
sification of multiple h&e images via an ensemble
computational scheme. Entropy, 26(1):34.
Martinez, E. Z., Louzada-Neto, F., and Pereira, B. d. B.
(2003). A curva roc para testes diagn´osticos. Cad.
sa´ude colet.,(Rio J.), 11(1):7–31.
Montalbo, F. J. P. (2022). Diagnosing gastrointestinal dis-
eases from endoscopy images through a multi-fused
cnn with auxiliary layers, alpha dropouts, and a fu-
sion residual block. Biomedical Signal Processing
and Control, 76:103683.
Nanni, L., Ghidoni, S., Brahnam, S ., Li u, S., and Zhang,
L. (2020). Ensemble of handcrafted and deep learned
features for cervical cell classification. I n Nanni, L.,
Brahnam, S., Brattin, R., Ghidoni, S., and Jain, L., ed-
itors, Deep Learners and Deep Learner Descriptors
for Medical A pplications. Intelligent Systems Refer-
ence Library, volume 186, pages 117–135. Springer.
Ponti Jr, M. P. (2011). Combining classifiers: from the cre-
ation of ensembles to the decision fusion. In 2011 24th
SIBGRAPI Conference on Graphics, Patterns, and Im-
ages Tutorials, pages 1–10. IEEE.
Rajinikanth, V., Joseph Raj, A., Thanaraj, K., and Naik, G.
(2020). A customized vgg19 network wit h concatena-
tion of deep and handcrafted features for brain tumor
detection. Appl. Sci., 10(10):3429.
Roberto, G. F. , Lumini, A., Neves, L. A., and do Nasci-
mento, M. Z. (2021). Fractal neural network: A new
ensemble of fractal geometry and convolutional neu-
ral networks for the classification of histology images.
Expert Systems with Applications, 166:114103.
Roberto, G. F., Neves, L. A., Nascimento, M. Z., Tosta,
T. A., Longo, L. C. , Martins, A. S., and Faria, P. R.
(2017). Features based on the percolation theory for
quantification of non-hodgkin lymphomas. Comput-
ers in biology and medicine, 91:135–147.
Sirinukunwattana, K., Pluim, J. P., Chen, H., Qi, X. , Heng,
P.-A., Guo, Y. B., Wang, L. Y., Matuszewski, B. J.,
Bruni, E., Sanchez, U., et al. (2017). Gland segmen-
tation in colon histology images: The glas challenge
contest. Medical i m age analysis, 35:489–502.
Sukegawa, S., Fujimura, A., Taguchi, A., Yamamoto, N.,
Kitamura, A., Goto, R., N akano, K., Takabatake, K.,
Kawai, H., Nagatsuka, H., et al. (2022). Identification
of osteoporosis using ensemble deep learning model
with panoramic radiographs and clinical covariates.
Scientific reports, 12(1):1–10.
Tenguam, J. J., Longo, L. H. d. C., Roberto, G. F., Tosta,
T. A., de Faria, P. R., Loyola, A. M., Cardoso, S. V.,
Silva, A. B., do Nascimento, M. Z. , and Neves, L. A.
(2024). Ensemble learning-based solutions: An ap-
proach for evaluating multiple features in the con-
text of h&e histological images. Applied Sciences,
14(3):1084.
Wu, M., Zhu, C., Yang, J., Cheng, S., Yang, X., Gu, S., Xu,
S., Wu, Y., Shen, W., H uang, S., et al. (2023). Explor-
ing prognostic indicators in the pathological images
of ovarian cancer based on a deep survival network.
Frontiers in Genetics, 13:1069673.
Xu, L., Zhang, H., Song, L., and Lei, Y. (2022). Bi-
mgan: Bidirectional t1-to-t2 mri images prediction us-
ing multi-generative multi-adversarial nets. Biomedi-
cal Signal Processing and Control, 78:103994.
Yu, C., Chen, H., Li, Y., Peng, Y., Li, J., and Yang, F.
(2019). Breast cancer classification i n pathological
images based on hybrid features. Multimed Tools
Appl, 78:21325–21345.
Zahn, J. M., Poosala, S., Owen, A. B., Ingram, D. K.,
Lustig, A., Carter, A., Weeraratna, A. T., Taub, D. D.,
Gorospe, M., Mazan-Mamczarz, K., et al. (2007).
Agemap: a gene expression database for aging in
mice. PLoS genetics, 3(11):e201.
Zhang, F., Lin, S., Xiao, X., Wang, Y., and Zhao, Y. (2024).
Global attention network with multiscale feature fu-
sion for infrared small target detection. Optics &
Laser Technology, 168:110012.
Zheng, H., Hu, Z., Yang, L., Xu, A., Zheng, M., Zhang, C.,
and Li, K. (2023). Multi-feature collaborative fusion
network with deep supervision for sar ship classifica-
tion. IEEE Transactions on Geoscience and Remote
Sensing.