REFERENCES
Böcker, H.-D., Hohl, H., and Schwab, T. (1990). Upsilon-
pi-ADAPT-epsilon-rho: Individualizing hypertext.
Proceedings of the IFIP TC13 Third Interational
Conference on Human-Computer Interaction, 931–
936.
Caro, M. F., Josyula, D., and Jiménez, J. (2015). Multi-level
pedagogical model for the personalization of
pedagogical strategies in intelligent tutoring systems.
Dyna, 82, 185–193.
Casillo, M., Conte, D., Lombardi, M., Santaniello, D., and
Valentino, C. (2021). Recommender System for Digital
Storytelling: A Novel Approach to Enhance Cultural
Heritage. In A. Del Bimbo, R. Cucchiara, S. Sclaroff,
G. M. Farinella, T. Mei, M. Bertini, H. J. Escalante, and
R. Vezzani (Eds.), Pattern Recognition. ICPR
International Workshops and Challenges (pp. 304–
317). Springer International Publishing.
Chandrasekhar, U., and Khare, N. (2021). An intelligent
tutoring system for new student model using fuzzy soft
set-based hybrid optimization algorithm. Soft
Computing, 25(24), 14979–14992. https://doi.org/
10.1007/s00500-021-06396-8
del Puerto Paule Ruiz, M., Díaz, M. J. F., Soler, F. O., and
Pérez, J. R. P. (2008). Adaptation in current e-learning
systems. Computer Standards & Interfaces, 30(1), 62–
70. https://doi.org/10.1016/j.csi.2007.07.006
Desai, D. (2022). Hyper-Personalization: An AI-Enabled
Personalization for Customer-Centric Marketing. In S.
Singh (Ed.), Adoption and Implementation of AI in
Customer Relationship Management (pp. 40–53). IGI
Global. https://doi.org/10.4018/978-1-7998-7959-
6.CH003
Dixson, M. D. (2015). Measuring Student Engagement in
the Online Course: The Online Student Engagement
Scale (OSE). Journal of Asynchronous Learning
Networks, 19. https://doi.org/10.24059/olj.v19i4.561
Dorça, F. A., Carvalho, V. C., Mendes, M. M., Araújo, R.
D., Ferreira, H. N., and Cattelan, R. G. (2017). An
Approach for Automatic and Dynamic Analysis of
Learning Objects Repositories through Ontologies and
Data Mining Techniques for Supporting Personalized
Recommendation of Content in Adaptive and
Intelligent Educational Systems. 2017 IEEE 17th
International Conference on Advanced Learning
Technologies (ICALT), 514–516. https://doi.org/
10.1109/ICALT.2017.121
Eduexe - eLearning authoring tool. (2024). Retrieved
November 16, 2024, from https://eduexe.com/
El-Sabagh, H. A. (2021). Adaptive e-learning environment
based on learning styles and its impact on development
students’ engagement. International Journal of
Educational Technology in Higher Education, 18(1),
53. https://doi.org/10.1186/s41239-021-00289-4
Ennouamani, S., and Mahani, Z. (2017). An overview of
adaptive e-learning systems. 2017 Eighth International
Conference on Intelligent Computing and Information
Systems (ICICIS), 342–347. https://doi.org/10.1109/
INTELCIS.2017.8260060
Fenza, G., Orciuoli, F., and Sampson, D. G. (2017).
Building Adaptive Tutoring Model Using Artificial
Neural Networks and Reinforcement Learning. 2017
IEEE 17th International Conference on Advanced
Learning Technologies (ICALT), 460–462.
https://doi.org/10.1109/ICALT.2017.124
Fleming, N. D. (2006). VARK visual, aural/auditory,
read/write, kinesthetic. New Zealand: Bonwell Green
Mountain Falls.
Gaudioso, E., Montero, M., and Hernandez-Del-Olmo, F.
(2012). Supporting teachers in adaptive educational
systems through predictive models: A proof of concept.
Expert Systems with Applications, 39(1), 621–625.
https://doi.org/10.1016/J.ESWA.2011.07.052
Google Teachable Machine. (2019). Retrieved November
16, 2024, from https://teachablemachine.withgoog
le.com/
Kasinathan, V., Mustapha, A., and Medi, I. (2017).
Adaptive learning system for higher learning. 2017 8th
International Conference on Information Technology
(ICIT), 960–970. https://doi.org/10.1109/ICITECH.20
17.8079975
Katsaris, I., and Vidakis, N. (2021). Adaptive e-learning
systems through learning styles: A review of the
literature. Advances in Mobile Learning Educational
Research, 1(2), 124–145. https://doi.org/10.25082/
AMLER.2021.02.007
Khomeiny, A. T., Restu Kusuma, T., Handayani, A. N.,
Prasetya Wibawa, A., and Supadmi Irianti, A. H.
(2020). Grading System Recommendations for
Students using Fuzzy Mamdani Logic. 2020 4th
International Conference on Vocational Education and
Training (ICOVET), 1–6. https://doi.org/10.1109/
ICOVET50258.2020.9230299
Kovacic, Z., and Bogdan, S. (2018). Fuzzy controller
design: theory and applications. CRC press.
Lerís, D., Sein-Echaluce, M. L., Hernández, M., and Bueno,
C. (2017). Validation of indicators for implementing an
adaptive platform for MOOCs. Computers in Human
Behavior, 72, 783–795. https://doi.org/10.1016/j.chb.
2016.07.054
Mamdani, E. H. (1974). Application of fuzzy algorithms for
control of simple dynamic plant. Proceedings of the
Institution of Electrical Engineers, 121(12), 1585–
1588.
Marciniak, J. (2014). Building e-learning content
repositories to support content reusability.
International Journal of Emerging Technologies in
Learning, 9(3), 45–52. https://doi.org/10.3991/ijet.v9
i3.3456
Marciniak, J., Szczepański, M., Dyczkowski, K.,
Mazurowska, K., Stanczewski, R., Grzybek, J., and
Marciniak, D. (2023). The Use of a Fuzzy Rule-Based
System in Adaptive e-Learning Content Based on
Intercultural Competence. 2023 IEEE International
Conference on Fuzzy Systems (FUZZ), 1–6.
https://doi.org/10.1109/FUZZ52849.2023.10309813
Mendel, J. M. (2017). Uncertain Rule-Based Fuzzy
Systems. Uncertain Rule-Based Fuzzy Systems.
https://doi.org/10.1007/978-3-319-51370-6