communication. In ACM Int. Conf. on Multimodal
Interaction, California, USA, pp. xx–xx.
Hai, L., Guo, H. (2020). Face detection with improved face
R-CNN training method. In Proceedings of the 3rd
International Conference on Control, Computer Vision,
pp. 22–25.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual
learning for image recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, 770–778.
Ikram, S., et al. (2023). Recognition of student engagement
state in a classroom environment using deep and
efficient transfer learning algorithm. In Applied
Sciences, vol. 13, no. 15, pp. 8637. DOI:
10.3390/app13158637.
Kuh, G. D. (2009). The national survey of student
engagement: Conceptual and empirical foundations. In
New Directions for Institutional Research, vol. 2009, no.
141, pp. 5–20.
Larson, R. W., Richards, M. H. (1991). Boredom in the
middle school years: blaming schools versus blaming
students. In Am. J. Educ., vol. 99, no. 4, pp. 418–443.
Liao, Y., Wang, J., Wu, Y. (2021). Deep Facial Spatio-
temporal Network (DFSTN) for predicting student
engagement based on facial expressions and spatio-
temporal features. In Applied Intelligence, 2021, pp.
287–303. DOI: 10.1007/s10489-020-01995-1.
Mehta, N. K., Prasad, S. S., Saurav, S., Saini, R., Singh, S.
(2022). Three-dimensional DenseNet self-attention
neural network for automatic detection of student’s
engagement. In Applied Intelligence, vol. 52, no. 12, pp.
13803–13823. DOI: 10.1007/s10489-022-03200-4.
Murshed, M., Dewan, M. A. A., Lin, F., & Wen, D. (2019,
August). Engagement detection in e-learning
environments using convolutional neural networks. In
2019 IEEE Intl Conf on Dependable, Autonomic and
Secure Computing, Intl Conf on Pervasive Intelligence
and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology
Congress (pp. 80-86). IEEE.
Nezami, O. M., Richards, D., & Hamey, L. (2017). Semi-
supervised detection of student engagement.
Nguyen, Q. T., Binh, H. T., Bui, T. D., & NT, P. D. (2019,
December). Student postures and gestures recognition
system for adaptive learning improvement. In 2019 6th
NAFOSTED Conference on Information and Computer
Science (NICS) (pp. 494-499). IEEE.
O'Brien, H. L., Toms, E. G. (2010). The development and
evaluation of a survey to measure user engagement. In
J. Am. Soc. Inf. Sci. Technol., vol. 61, no. 1, pp. 50–69.
Qi, Y., Zhuang, L., Chen, H., Han, X., & Liang, A. (2023).
Evaluation of Students’ Learning Engagement in Online
Classes Based on Multimodal Vision Perspective.
Electronics, 13(1), 149.
Shorten, C., Khoshgoftaar, T. M. (2019). A survey on image
data augmentation for deep learning. In Journal of Big
Data, vol. 6, pp. 1–48.
Sugden, N., Brunton, R., MacDonald, J., Yeo, M., Hicks, B.
(2021). Evaluating student engagement and deep
learning in interactive online psychology learning
activities. In Australas. J. Educ. Technol., vol. 37, pp.
45–65.
Sharma, P., Joshi, S., Gautam, S., Maharjan, S., Khanal, S.
R., Reis, M. C., ... & de Jesus Filipe, V. M. (2022,
August). Student engagement detection using emotion
analysis, eye tracking and head movement with machine
learning. In International Conference on Technology
and Innovation in Learning, Teaching and Education
(pp. 52-68). Cham: Springer Nature Switzerland.
Toti, D., Capuano, N., Campos, F., Dantas, M., Neves, F., &
Caballé, S. (2021). Detection of student engagement in
e-learning systems based on semantic analysis and
machine learning. In Advances on P2P, Parallel, Grid,
Cloud and Internet Computing: Proceedings of the 15th
International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing (3PGCIC-2020) 15 (pp. 211-
223). Springer International Publishing.
Trowler, V. (2010). Student engagement literature review.
In The Higher Education Academy, vol. 11, no. 1, pp.
1–15.
Simonyan, K., Zisserman, A. (2014). Very deep
convolutional networks for large-scale image
recognition. In arXiv preprint arXiv:1409.1556.
Shernoff, D. J., Csikszentmihalyi, M., Schneider, B.,
Shernoff, E. S. (2000). Student engagement in high
school classrooms from the perspective of flow theory.
In Sociol. Educ., vol. 73, pp. 247–269.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2818–
2826.
Xu, R., Li, C., Paterson, A. H., Jiang, Y., Sun, S., Robertson,
J. S. (2018). Aerial images and convolutional neural
network for cotton bloom detection. In Frontiers in
Plant Science, vol. 8, pp. 1–17
Yosinski, J., Clune, J., Bengio, Y., Lipson, H. (2014). How
transferable are features in deep neural networks? In
arXiv preprint arXiv:1411.1792.
Yamashita, R., Nishio, M., Do, R. K. G., Togashi, K. (2018).
Convolutional neural networks: An overview and
application in radiology. In Insights Into Imaging, vol.
9, pp. 611–629. [CrossRef] [PubMed]
Zhang, Z., Li, Z., Liu, H., Cao, T., & Liu, S. (2020). Data-
driven online learning engagement detection via facial
expression and mouse behavior recognition
technology. Journal of Educational Computing
Research, 58(1), 63-86.