
more, the authors thank Franziska Vogt for her valu-
able work on implementation and evaluation of the
fusion and detection algorithms.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Man
´
e, D., Monga, R., Moore,
S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. http://download.
tensorflow.org/paper/whitepaper2015.pdf.
Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Bei-
jbom, O. (2020). nuScenes: A Multimodal Dataset
for Autonomous Driving. pages 11621–11631.
Charles, R. Q., Su, H., Kaichun, M., and Guibas, L. J.
(2017). PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 77–85. ISSN: 1063-6919.
Fang, S. and Li, H. (2024). Multi-Vehicle Cooperative Si-
multaneous LiDAR SLAM and Object Tracking in
Dynamic Environments. IEEE Transactions on In-
telligent Transportation Systems, 25(9):11411–11421.
Conference Name: IEEE Transactions on Intelligent
Transportation Systems.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013).
Vision meets robotics: The KITTI dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–
1237. Publisher: SAGE Publications Ltd STM.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Conference on Computer Vision and Pattern
Recognition (CVPR).
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Resid-
ual Learning for Image Recognition. pages 770–778.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. pages 448–456.
Li, L., Yang, M., Weng, L., and Wang, C. (2022). Robust
localization for intelligent vehicles based on pole-like
features using the point cloud. IEEE Transactions
on Automation Science and Engineering, 19(2):1095–
1108.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). SSD: Single
Shot MultiBox Detector. In Leibe, B., Matas, J.,
Sebe, N., and Welling, M., editors, Computer Vision
– ECCV 2016, pages 21–37, Cham. Springer Interna-
tional Publishing.
Massow, K. and Radusch, I. (2018). A rapid prototyp-
ing environment for cooperative advanced driver as-
sistance systems. Journal of Advanced Transporta-
tion, 2018(1):2586520.
Protzmann, R., Sch
¨
unemann, B., and Radusch, I. (2017).
Simulation of Convergent Networks for Intelligent
Transport Systems with VSimRTI, chapter 1, pages 1–
28. John Wiley & Sons, Ltd.
Royo, S. and Ballesta-Garcia, M. (2019). An Overview of
Lidar Imaging Systems for Autonomous Vehicles. Ap-
plied Sciences, 9(19):4093. Number: 19 Publisher:
Multidisciplinary Digital Publishing Institute.
Schrab, K., Neubauer, M., Protzmann, R., Radusch, I.,
Manganiaris, S., Lytrivis, P., and Amditis, A. J.
(2023). Modeling an ITS Management Solution for
Mixed Highway Traffic with Eclipse MOSAIC. IEEE
Transactions on Intelligent Transportation Systems,
24(6):6575–6585.
Strunz, M., Protzmann, R., and Radusch, I. (2024). Cross-
dataset generalization: Bridging the gap between real
and synthetic lidar data. In International Conference
on Simulation Tools and Techniques. Springer.
Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Pat-
naik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine,
B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Tim-
ofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi,
A., Zhang, Y., Shlens, J., Chen, Z., and Anguelov,
D. (2020). Scalability in Perception for Autonomous
Driving: Waymo Open Dataset. pages 2446–2454.
Wu, Y., Wang, Y., Zhang, S., and Ogai, H. (2021). Deep
3D Object Detection Networks Using LiDAR Data:
A Review. IEEE Sensors Journal, 21(2):1152–1171.
Conference Name: IEEE Sensors Journal.
Xu, D., Zhou, A., Zhang, X., Wang, G., Liu, X., An, C.,
Shi, Y., Liu, L., and Ma, H. (2020). Understanding
operational 5g: A first measurement study on its cov-
erage, performance and energy consumption. In Pro-
ceedings of the Annual Conference of the ACM Spe-
cial Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, SIGCOMM ’20,
page 479–494, New York, NY, USA. Association for
Computing Machinery.
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., and Dai, J. (2021).
Deformable DETR: Deformable Transformers for
End-to-End Object Detection. arXiv:2010.04159.
Zou, Z., Chen, K., Shi, Z., Guo, Y., and Ye, J. (2023). Ob-
ject Detection in 20 Years: A Survey. Proceedings of
the IEEE, 111(3):257–276. Conference Name: Pro-
ceedings of the IEEE.
Improving Object Detection Through Multi-Perspective LiDAR Fusion
457