
language models: their impact and potential applica-
tions. Knowledge and Information Systems, pages 1–
24.
Collins, J., Hisrt, W., Tang, W., Luu, C., Smith, P., Wat-
son, A., and Sahandi, R. (2016). Edtree: Emotional
dialogue trees for game based training. In E-Learning
and Games: 10th International Conference, Edutain-
ment 2016, Hangzhou, China, April 14-16, 2016, Re-
vised Selected Papers 10, pages 77–84. Springer.
Desai, B., Patil, K., Patil, A., and Mehta, I. (2023). Large
language models: A comprehensive exploration of
modern ai’s potential and pitfalls. Journal of Inno-
vative Technologies, 6(1).
Doan, N., Patte, K. A., Ferro, M. A., and Leatherdale, S. T.
(2020). Reluctancy towards help-seeking for mental
health concerns at secondary school among students
in the compass study. International Journal of Envi-
ronmental Research and Public Health, 17.
Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A.,
Fan, A., et al. (2024). The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.
Guo, Q., Tang, J., Sun, W., Tang, H., Shang, Y., and Wang,
W. (2024). Soullmate: An adaptive llm-driven sys-
tem for advanced mental health support and assess-
ment, based on a systematic application survey. arXiv
preprint arXiv:2410.11859.
Holth
¨
ower, J. and Doorn, J. (2022). Robots do not judge:
service robots can alleviate embarrassment in service
encounters. Journal of the Academy of Marketing Sci-
ence, 51:1–18.
Hutchesson, M. J., Duncan, M. J., Oftedal, S., Ashton,
L. M., Oldmeadow, C., Kay-Lambkin, F., and What-
nall, M. C. (2021). Latent class analysis of multi-
ple health risk behaviors among australian university
students and associations with psychological distress.
Nutrients, 13(2):425.
Kaysi, F. (2023). Mobile instant messaging application
habits among university students. Interactive Learn-
ing Environments, 31(5):3211–3229.
Lai, T., Shi, Y., Du, Z., Wu, J., Fu, K., Dou, Y., and Wang, Z.
(2023). Psy-llm: Scaling up global mental health psy-
chological services with ai-based large language mod-
els. arXiv preprint arXiv:2307.11991.
Lazzarino, A. I., Salkind, J. A., Amati, F., Robinson, T.,
Gnani, S., Nicholls, D., and Hargreaves, D. S. (2023).
Inequalities in mental health service utilisation by
children and young people: a population survey us-
ing linked electronic health records from northwest
london, uk. Journal of Epidemiology and Community
Health.
Legaspi Jr, C. M., Pacana, T. R., Loja, K., Sing, C., and
Ong, E. (2022). User perception of wysa as a men-
tal well-being support tool during the covid-19 pan-
demic. In Proceedings of the Asian HCI Symposium
2022, pages 52–57.
Maples, B., Cerit, M., Vishwanath, A., and Pea, R. (2024).
Loneliness and suicide mitigation for students using
gpt3-enabled chatbots. npj mental health research,
3(1):4.
McManus, S. and Gunnell, D. (2020). Trends in mental
health, non-suicidal self-harm and suicide attempts in
16–24-year old students and non-students in england,
2000–2014. Social Psychiatry and Psychiatric Epi-
demiology, 55(1):125–128.
Miller, H. N., Voils, C. I., Cronin, K. A., Jeanes, E., Haw-
ley, J., Porter, L. S., Adler, R. R., Sharp, W., Pabich,
S., Gavin, K. L., et al. (2022). A method to deliver au-
tomated and tailored intervention content: 24-month
clinical trial. JMIR Formative Research, 6(9):e38262.
OpenAI (2024). GPT-4o mini: advancing cost-efficient in-
telligence. Accessed: 2024-09-02.
Pinho, B. d. S. (2024). Planejamento n
˜
ao-determin
´
ıstico
para o gerenciamento do agente de di
´
alogo plant
˜
ao
coronav
´
ırus.
Pompeo-Fargnoli, A. (2022). Mental health stigma among
college students: misperceptions of perceived and per-
sonal stigmas. Journal of American college health,
70(4):1030–1039.
Reddy, V. N., Reddy, S. M., Vamshi, A. Y., Reddy, K. N.,
Dhanunjay, B., and Gopal, S. V. (2022). What-
sapp chatbot for career guidance. International Re-
search Journal of Engineering and Technology (IR-
JET), 9(10):2395–0072.
Rose, C. M. (2014). Realistic dialogue engine for video
games. The University of Western Ontario (Canada).
S, P., Balakrishnan, N., R, K. T., B, A. J., and S, D. (2023).
Design and development of ai-powered healthcare
whatsapp chatbot. 2023 2nd International Conference
on Vision Towards Emerging Trends in Communica-
tion and Networking Technologies (ViTECoN), pages
1–6.
Schmerler, J., Solon, L., Harris, A. B., Best, M., and
Laporte, D. (2023). Publication trends in research
on mental health and mental illness in orthopaedic
surgery. JBJS Reviews, 11.
Siddals, S., Coxon, A., and Torous, J. (2024). ” it just hap-
pened to be the perfect thing”: Real-life experiences
of generative ai chatbots for mental health.
Teixeira, M. S., Maran, V., and Dragoni, M. (2021). To-
wards semantic-awareness for information manage-
ment and planning in health dialogues. In 2021 IEEE
34th International Symposium on Computer-Based
Medical Systems (CBMS), pages 372–377. IEEE.
Williams, A. J., Freed, M., Theofanopoulou, N.,
Daud
´
en Roquet, C., Klasnja, P., Gross, J., Schleider,
J., and Slovak, P. (2023). Feasibility, perceived im-
pact, and acceptability of a socially assistive robot to
support emotion regulation with highly anxious uni-
versity students: mixed methods open trial. JMIR
Mental Health, 10:e46826.
Zhang, Y., Sun, S., Galley, M., Chen, Y.-C., Brock-
ett, C., Gao, X., Gao, J., Liu, J., and Dolan, B.
(2019). Dialogpt: Large-scale generative pre-training
for conversational response generation. arXiv preprint
arXiv:1911.00536.
Zhu, Q., Chong, L., Yang, M., and Luo, J. (2024). Read-
ing users’ minds from what they say: An investigation
into llm-based empathic mental inference.
FlexiDialogue: Integrating Dialogue Trees for Mental Health with Large Language Models
275