David A. Pelta, Inma P. Cabrera, Bernadette Bouchon-
Meunier, and Ronald R. Yager, 3–15. Communications
in Computer and Information Science. Cham: Springer
International Publishing. https://doi.org/10.1007/978-
3-319-91473-2_1.
Alvarez Melis, David, and Tommi Jaakkola. 2018.
‘Towards Robust Interpretability with Self-Explaining
Neural Networks’. Advances in Neural Information
Processing Systems. Vol. 31. Curran Associates, Inc.
Anjomshoae, Sule, Amro Najjar, Davide Calvaresi, and
Kary Främling. 2019. ‘Explainable Agents and Robots:
Results from a Systematic Literature Review’.
Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, 1078–88.
AAMAS ’19. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.
Arias-Duart, Anna, Ferran Parés, Dario Garcia-Gasulla, and
Victor Giménez-Ábalos. 2022. ‘Focus! Rating XAI
Methods and Finding Biases’. 2022 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 1–8.
https://doi.org/10.1109/FUZZ-
IEEE55066.2022.9882821.
Arras, Leila, Grégoire Montavon, Klaus-Robert Müller, and
Wojciech Samek. 2017. ‘Explaining Recurrent Neural
Network Predictions in Sentiment Analysis’.
arXiv:1706.07206 [Cs, Stat], August. http://arxiv.org/
abs/1706.07206.
‘Assessment List for Trustworthy Artificial Intelligence
(ALTAI) for Self-Assessment | Shaping Europe’s
Digital Future’. 2020. 17 July 2020. https://digital-
strategy.ec.europa.eu/en/library/assessment-list-
trustworthy-artificial-intelligence-altai-self-
assessment.
Bach, Sebastian, Alexander Binder, Grégoire Montavon,
Frederick Klauschen, Klaus-Robert Müller, and
Wojciech Samek. 2015. ‘On Pixel-Wise Explanations
for Non-Linear Classifier Decisions by Layer-Wise
Relevance Propagation’. PLOS ONE 10 (7): e0130140.
https://doi.org/10.1371/journal.pone.0130140.
Barredo Arrieta, Alejandro, Natalia Díaz-Rodríguez, Javier
Del Ser, Adrien Bennetot, Siham Tabik, Alberto
Barbado, Salvador Garcia, et al. 2020. ‘Explainable
Artificial Intelligence (XAI): Concepts, Taxonomies,
Opportunities and Challenges toward Responsible AI’.
Information Fusion 58 (June):82–115. https://doi.org/
10.1016/j.inffus.2019.12.012.
Biran, Or, and Courtenay V. Cotton. 2017. ‘Explanation
and Justification in Machine Learning : A Survey Or’.
https://www.semanticscholar.org/paper/Explanation-
and-Justification-in-Machine-Learning-%3A-Biran-
Cotton/02e2e79a77d8aabc1af1900ac80ceebac20abde4
Chakraborti, Tathagata, Sarath Sreedharan, Yu Zhang, and
Subbarao Kambhampati. 2017. ‘Plan Explanations as
Model Reconciliation: Moving Beyond Explanation as
Soliloquy’. Proceedings of the Twenty-Sixth
International Joint Conference on Artificial
Intelligence, 156–63. Melbourne, Australia:
International Joint Conferences on Artificial
Intelligence Organization. https://doi.org/10.24963/
ijcai.2017/23.
Chalasani, Prasad, Jiefeng Chen, Amrita Roy Chowdhury,
Somesh Jha, and Xi Wu. 2020. ‘Concise Explanations
of Neural Networks Using Adversarial Training’.
Cortez, Paulo, and Mark J. Embrechts. 2013. ‘Using
Sensitivity Analysis and Visualization Techniques to
Open Black Box Data Mining Models’. Information
Sciences 225 (March):1–17. https://doi.org/10.1016/
j.ins.2012.10.039.
Dasgupta, Sanjoy, Nave Frost, and Michal Moshkovitz.
2022. ‘Framework for Evaluating Faithfulness of Local
Explanations’. Proceedings of the 39th International
Conference on Machine Learning, 4794–4815. PMLR.
https://proceedings.mlr.press/v162/dasgupta22a.html.
Došilović, Filip Karlo, Mario Brčić, and Nikica Hlupić.
2018. ‘Explainable Artificial Intelligence: A Survey’.
2018 41st International Convention on Information and
Communication Technology, Electronics and
Microelectronics (MIPRO), 0210–15. https://doi.org/
10.23919/MIPRO.2018.8400040.
Gilpin, Leilani H., David Bau, Ben Z. Yuan, Ayesha Bajwa,
Michael Specter, and Lalana Kagal. 2018. ‘Explaining
Explanations: An Overview of Interpretability of
Machine Learning’. 2018 IEEE 5th International
Conference on Data Science and Advanced Analytics
(DSAA), 80–89. https://doi.org/10.1109/
DSAA.2018.00018.
Goodfellow, Ian J., Jonathon Shlens, and Christian
Szegedy. 2015. ‘Explaining and Harnessing
Adversarial Examples’. arXiv. https://doi.org/
10.48550/arXiv.1412.6572.
Guidotti, Riccardo. 2021. ‘Evaluating Local Explanation
Methods on Ground Truth’. Artificial Intelligence 291
(February):103428. https://doi.org/10.1016/
j.artint.2020.103428.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
2016. ‘Deep Residual Learning for Image Recognition’.
770–78. https://openaccess.thecvf.com/
content_cvpr_2016/html/He_Deep_Residual_Learning
_CVPR_2016_paper.html.
Hedström, Anna, Philine Lou Bommer, Kristoffer Knutsen
Wickstrøm, Wojciech Samek, Sebastian Lapuschkin,
and Marina MC Höhne. 2023. ‘The Meta-Evaluation
Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus’. Transactions on
Machine Learning Research, February. https://
openreview.net/forum?id=j3FK00HyfU.
Hoffman, R., Shane T. Mueller, Gary Klein, and Jordan
Litman. 2018. ‘Metrics for Explainable AI: Challenges
and Prospects’. arXiv Preprint arXiv:1812.04608.,
December.
Jian, Jiun-Yin, Ann M. Bisantz, and Colin G. Drury. 2000.
‘Foundations for an Empirically Determined Scale of
Trust in Automated Systems’. International Journal of
Cognitive Ergonomics 4 (1): 53–71. https://doi.org/
10.1207/S15327566IJCE0401_04.
Justa, Segura Y. 2022. ‘INTELIGENCIA ARTIFICIAL
ÉTICA EN SANIDAD’. DigitalIES, 62.
Lai, Vivian, and Chenhao Tan. 2019. ‘On Human
Predictions with Explanations and Predictions of
Machine Learning Models: A Case Study on Deception