
Diaba, S. Y. and Elmusrati, M. (2023). Proposed algorithm
for smart grid ddos detection based on deep learning.
Neural Networks, 159:175–184.
El-Ghamry, A., Darwish, A., and Hassanien, A. E. (2023).
An optimized cnn-based intrusion detection system
for reducing risks in smart farming. Internet of Things,
22:100709.
Farrukh, Y. A., Ahmad, Z., Khan, I., and Elavarasan, R. M.
(2021). A sequential supervised machine learning
approach for cyber attack detection in a smart grid
system. In 2021 North American Power Symposium
(NAPS), pages 1–6. IEEE.
Fatani, A., Dahou, A., Al-Qaness, M. A., Lu, S., and Elaziz,
M. A. (2021). Advanced feature extraction and se-
lection approach using deep learning and aquila op-
timizer for iot intrusion detection system. Sensors,
22(1):140.
Fouladi, R. F., Ermis¸, O., and Anarim, E. (2022). A ddos
attack detection and countermeasure scheme based on
dwt and auto-encoder neural network for sdn. Com-
puter Networks, 214:109140.
Gad, A. R., Haggag, M., Nashat, A. A., and Barakat, T. M.
(2022). A distributed intrusion detection system us-
ing machine learning for iot based on ton-iot dataset.
International Journal of Advanced Computer Science
and Applications, 13(6).
Hnamte, V. and Hussain, J. (2023a). Dcnnbilstm: An
efficient hybrid deep learning-based intrusion detec-
tion system. Telematics and Informatics Reports,
10:100053.
Hnamte, V. and Hussain, J. (2023b). Dependable intrusion
detection system using deep convolutional neural net-
work: A novel framework and performance evalua-
tion approach. Telematics and Informatics Reports,
11:100077.
Hnamte, V., Nhung-Nguyen, H., Hussain, J., and Hwa-Kim,
Y. (2023). A novel two-stage deep learning model for
network intrusion detection: Lstm-ae. IEEE Access.
Islam, M. T. and Mustafa, H. A. (2023). Multi-layer hybrid
(mlh) balancing technique: A combined approach to
remove data imbalance. Data & Knowledge Engineer-
ing, 143:102105.
Khan, F., Jan, M. A., Alturki, R., Alshehri, M. D., Shah,
S. T., and ur Rehman, A. (2023). A secure ensemble
learning-based fog-cloud approach for cyberattack de-
tection in iomt. IEEE Transactions on Industrial In-
formatics, 19(10):10125–10132.
Kumar, P., Gupta, G. P., and Tripathi, R. (2021a). An
ensemble learning and fog-cloud architecture-driven
cyber-attack detection framework for iomt networks.
Computer Communications, 166:110–124.
Kumar, P., Gupta, G. P., Tripathi, R., Garg, S., and Has-
san, M. M. (2021b). Dltif: Deep learning-driven cyber
threat intelligence modeling and identification frame-
work in iot-enabled maritime transportation systems.
IEEE Transactions on Intelligent Transportation Sys-
tems, 24(2):2472–2481.
Latif, S., Boulila, W., Koubaa, A., Zou, Z., and Ahmad,
J. (2024). Dtl-ids: An optimized intrusion detection
framework using deep transfer learning and genetic
algorithm. Journal of Network and Computer Appli-
cations, 221:103784.
Latif, S., e Huma, Z., Jamal, S. S., Ahmed, F., Ahmad, J.,
Zahid, A., Dashtipour, K., Aftab, M. U., Ahmad, M.,
and Abbasi, Q. H. (2021). Intrusion detection frame-
work for the internet of things using a dense random
neural network. IEEE Transactions on Industrial In-
formatics, 18(9):6435–6444.
Lee, J.-M. and Hong, S. (2020). Keeping host sanity for
security of the scada systems. IEEE Access, 8:62954–
62968.
Li, X. and Hedman, K. W. (2019). Enhancing power sys-
tem cyber-security with systematic two-stage detec-
tion strategy. IEEE Transactions on Power Systems,
35(2):1549–1561.
Mohammed, A. and Kora, R. (2023). A comprehen-
sive review on ensemble deep learning: Opportuni-
ties and challenges. Journal of King Saud University-
Computer and Information Sciences.
Patthi, S., Singh, S., et al. (2024). 2-layer classification
model with correlated common feature selection for
intrusion detection system in networks. Multimedia
Tools and Applications, pages 1–26.
Sharafaldin, I., Lashkari, A. H., Ghorbani, A. A., et al.
(2018). Toward generating a new intrusion detection
dataset and intrusion traffic characterization. ICISSp,
1:108–116.
Sharma, B., Sharma, L., and Lal, C. (2023). Anomaly-based
dnn model for intrusion detection in iot and model ex-
planation: Explainable artificial intelligence. In Pro-
ceedings of Second International Conference on Com-
putational Electronics for Wireless Communications:
ICCWC 2022, pages 315–324. Springer.
Thakkar, A. and Lohiya, R. (2023). Fusion of statistical im-
portance for feature selection in deep neural network-
based intrusion detection system. Information Fusion,
90:353–363.
Vijayanand, R., Devaraj, D., and Kannapiran, B. (2019).
A novel deep learning based intrusion detection sys-
tem for smart meter communication network. In 2019
IEEE International Conference on Intelligent Tech-
niques in Control, Optimization and Signal Process-
ing (INCOS), pages 1–3. IEEE.
Wu, C.-s. and Chen, S. (2023). A heuristic intrusion de-
tection approach using deep learning model. In 2023
International Conference on Information Networking
(ICOIN), pages 438–442. IEEE.
Stacked Ensemble Deep Learning for Robust Intrusion Detection in IoT Networks
1153