ACKNOWLEDGEMENTS
The authors thank The National Council for Scientific
and Technological Development of Brazil (CNPQ);
The Coordination for the Improvement of Higher
Education Personnel - Brazil (CAPES) (Grant
PROAP 88887.842889/2023-00 – PUC/MG,
Grant PDPG 88887.708960/2022-00 – PUC/MG -
INFORMAT-ICA and Finance Code 001); Minas
Gerais State Research Support Foundation
(FAPEMIG) under grant number APQ-01929-22,
and the Pontifical Catholic University of Minas
Gerais, Brazil.
REFERENCES
Albuquerque, J., Medeiros, A. M., Alves, A. C., Jannes,
C. E., Mancina, R. M., Pavanello, C., Chora, J. R.,
Mombelli, G., Calabresi, L., da Costa Pereira, A.,
Krieger, J. E., Romeo, S., Bourbon, M., and Antunes,
M. (2023). Generation and validation of a classification
model to diagnose familial hypercholesterolaemia in
adults. Atherosclerosis, 383:117314.
Banda, J. M., Sarraju, A., Abbasi, F., Parizo, J., Pariani,
M., Ison, H., Briskin, E., Wand, H., Dubois, S., Jung,
K., Myers, S. A., Rader, D. J., Leader, J. B., Murray,
M. F., Myers, K. D., Wilemon, K., Shah, N. H., and
Knowles, J. W. (2019). Finding missed cases of
familial hypercholesterolemia in health systems using
machine learning. NPJ Digit. Med., 2(1):23.
Calliari, S. S., Grando, L. G., Bertol, C. D., and Siqueira,
L.d. O. (2019). Dislipidemia em crianc¸as e adolescentes
do município de maraurs [dyslipidemia in children and
adolescents from the municipality of maraurs].
Cadernos Saúde Coletiva, 27(4):368–373.
Dritsas, E. and Trigka, M. (2022). Machine learning
methods for hypercholesterolemia long-term risk
prediction. Sensors, 22(14):5365.
Liu, J., Li, Y., Wang, X., Gao, D., Chen, L., Chen, M., Ma,
T., Ma, Q., Ma, Y., Zhang, Y., Jiang, J., Zou, Z., Wang,
X., Dong, Y., and Ma, J. (2021). Association between
fruit consumption and lipid profile among children and
adolescents: A national cross-sectional study in China.
Nutrients, 14.
Mensah, G. A., Fuster, V., Murray, C. J., and Roth, G. A.
(2023). Global burden of cardiovascular diseases and
risks, 1990-2022. Journal of the American College of
Cardiology, 82(25):2350–2473.
Nogueira de Sá, A. C., Gomes, C. S., Moreira, A. D.,
Velasquez-Melendez, G., and Malta, D. C. (2022).
Prevalência e fatores associados ao diagnóstico
autorreferido de colesterol alto na população adulta
brasileira: Pesquisa nacional de saúde 2019
[prevalence and factors associated with self-reported
diagnosis of high cholesterol in the brazilian adult
population: National health survey 2019].
Epidemiologia e Serviços de Saúde, 31(spe1).
Pirillo, A., Casula, M., Olmastroni, E., Norata, G., and
Catapano, A. (2021). Global epidemiology of
dyslipidaemias. Nature Reviews Cardiology, 18:689 –
700.
Reis, D. R., Santos, B. C., Bleicher, L., Zárate, L. E., and
Nobre, C. N. (2023). Prediction of enzymatic function
with high efficiency and a reduced number of features
using genetic algorithm. Computers in Biology and
Medicine, 158:106799.
Sakaki, J. R., Gao, S., Ha, K., Chavarro, J., Chen, M.-H.,
Sun, Q., Hart, J., and Chun, O. K. (2022). Childhood
beverage intake and risk of hypertension and hyper-
lipidaemia in young adults. International Journal of
Food Sciences and Nutrition, 73:954 – 964.
Schober, P., Boer, C., and Schwarte, L. A. (2018).
Correlation coefficients: Appropriate use and
interpretation. Anesthesia amp; Analgesia,
126(5):1763–1768.
Shetty, A. M., Aljunid, M. F., Manjaiah, D. H., and
Shaik Afzal, A. M. S. (2024). Hyperparameter
optimization of machine learning models using grid
search for amazon review sentiment analysis. In
Nanda, S. J., Yadav, R. P., Gandomi, A. H., and
Saraswat, M., editors, Data Science and Applications,
pages 451–474, Singapore. Springer Nature Singapore.
Zarate, L., Petrocchi, B., Dias Maia, C., Felix, C., and
Gomes, M. P. (2023). Capto - a method for
understanding problem domains for data science
projects: Capto - um método para entendimento de
domínio de problema para projetos em ciência de
dados. Concilium, 23(15):922–941.