
pseudo-labeled data, progressively enhancing ac-
curacy.
In our experiments, we applied MSRCST to clas-
sify images of oral cancer and leukoplakia. When
combined with MixUp data augmentation, MSRCST
achieved an average classification accuracy of
71.71%, outperforming traditional resizing and ran-
dom cropping methods. Additionally, it effectively
reduced misclassification rates, as demonstrated by
improved confusion matrices, thereby enhancing di-
agnostic reliability.
These results demonstrate that MSRCST success-
fully leverages high-resolution image data and semi-
supervised learning techniques to improve model per-
formance in medical image classification tasks. While
the study is limited by the dataset’s size and diversity,
future work will focus on expanding the dataset and
exploring additional techniques to further improve ac-
curacy and robustness.
REFERENCES
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An
image is worth 16x16 words: Transformers for image
recognition at scale, 2021. URL https://arxiv.org/abs/
2010.11929.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015. URL https://arxiv.org/
abs/1512.03385.
Japan Society for Oral Cancer Elimination. What is oral
cancer? https://www.oralcancer.jp/2005p1/. [Ac-
cessed: 2024-10-22].
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
genet classification with deep convolutional neural
networks. In Advances in Neural Information
Processing Systems, volume 25, 2012. URL https:
//proceedings.neurips.cc/paper files/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.
D.-H. Lee. Pseudo-label : The simple and efficient semi-
supervised learning method for deep neural networks.
2013. URL https://api.semanticscholar.org/CorpusID:
18507866.
G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio,
F. Ciompi, M. Ghafoorian, J. A. van der Laak, B. van
Ginneken, and C. I. S
´
anchez. A survey on deep learn-
ing in medical image analysis. Medical Image Anal-
ysis, 42:60–88, Dec. 2017. ISSN 1361-8415. doi:
10.1016/j.media.2017.07.005. URL http://dx.doi.org/
10.1016/j.media.2017.07.005.
National Cancer Center Japan. Cancer statistics: Oral
and pharyngeal cancer. https://ganjoho.jp/reg stat/
statistics/stat/cancer/3 oral.html. [Accessed: 2024-
10-22].
T. Nomura, S. Matsubara, Y. Ro, A. Katakura, N. Takano,
T. Shibahara, and S. Seta. Usefulness of vital stain-
ing with iodine solution in resection of early tongue
carcinoma. Journal of The Japanese Stomatologi-
cal Society, 57(3):297–302, 2008. doi: 10.11277/
stomatology1952.57.297.
P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan,
D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, M. P.
Lungren, and A. Y. Ng. Chexnet: Radiologist-level
pneumonia detection on chest x-rays with deep learn-
ing, 2017. URL https://arxiv.org/abs/1711.05225.
T. Shibahara, N. Yamamoto, T. Yakushiji, T. Nomura,
R. Sekine, K. Muramatsu, and H. Ohata. Narrow-band
imaging system with magnifying endoscopy for early
oral cancer. The Bulletin of Tokyo Dental College, 55
(2):87–94, 2014. doi: 10.2209/tdcpublication.55.87.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention
is all you need, 2017. URL https://arxiv.org/abs/1706.
03762.
Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-training
with noisy student improves imagenet classification,
2020. URL https://arxiv.org/abs/1911.04252.
H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz.
mixup: Beyond empirical risk minimization, 2018.
URL https://arxiv.org/abs/1710.09412.
Classification of Oral Cancer and Leukoplakia Using Oral Images and Deep Learning with Multi-Scale Random Crop Self-Training
787