education. Studies in Foreign Language Education,
35(1), 91-104.
Hudson, R. (1995). Measuring syntactic difficulty. Draft
manuscript.
IBM Corp. (2021). IBM SPSS Statistics for Windows,
Version 28.0. Armonk, NY: IBM Corp.
Jaccard, P. (1908). Nouvelles recherches sur la distribution
florale. Bulletin de la Société Vaudoise des Sciences
Naturelles, 44, 223–270.
Jayawardena, L., & Yapa, P. (2024). ParaFusion: A large-
scale LLM-driven English paraphrase dataset infused
with high-quality lexical and syntactic diversity. arXiv.
https://doi.org/10.48550/arXiv.2404.12010
Ji, N. (2018). Investigation into Validity of Paraphrasing
Task as a Writing Performance Test Item for EFL
Learners. Modern English Education, 19(2), 20-29.
Jiang, J., & Liu, H. (2015). The effects of sentence length
on dependency distance, dependency direction, and the
implications – Based on a parallel English–Chinese
dependency treebank. Language Sciences, 50, 93–104.
Kim, J. (2014). Predicting L2 writing proficiency using
linguistic complexity measures: A corpus-based study.
English Teaching, 69(4), 27-51.
Kim, M., & Kim, J. (2024). Comparing paraphrases by
humans and LLMs: An analysis of syntactic
complexity, semantic similarity, and lexical diversity
through NLP. In Proceedings of the 2024 Fall Joint
Conference of the Korean Generative Grammar Circle
and the Korean Society for Language and Information
(pp. 118-129). Korean Generative Grammar Circle &
Korean Society for Language and Information.
Kim, M. (2018). Investigating Reliability of Re-modified
Scoring Rubrics for EFL Paraphrasing Task. SNU
Working Papers in English Language and Linguistics,
Vol.16, pp. 36-56.
Kim, M. (2020). Investigating the reliability and validity of
scores from a paraphrasing test for Korean EFL
learners (Unpublished master’s thesis). Seoul National
University.
Lee, S., Lee, J., Moon, H., Park, C., Seo, J., Eo, S., Koo, S.,
& Lim, H. (2023). A survey on evaluation metrics for
machine translation. Mathematics, 11(4), 1006.
Liu, H. (2008). Dependency distance as a metric of
language comprehension difficulty. Journal of
Cognitive Science, 9(2), 159-191.
OpenAI. (2023). GPT-4 [Large language model].
https://openai.com/gpt-4
Pack, A., Barrett, A., & Escalante, J. (2024). Large
language models and automated essay scoring of
English language learner writing: Insights into validity
and reliability. Computers and Education: Artificial
Intelligence, 6, 100234.
Page, E. B. (1966). The imminence of grading essays by
computer. The Phi Delta Kappan, 47(5), 238–243.
https://www.jstor.org/stable/20371545
Palivela, H. (2021). Optimization of paraphrase generation
and identification using language models in natural
language processing. International Journal of
Information Management Data Insights, 1(2), 100025.
https://doi.org/10.1016/j.jjimei.2021.100025
Pecorari, D. (2023). Generative AI: Same same but
different?. Journal of Second Language Writing, 62,
101067.
Pehlivanoğlu, M. K., Gobosho, R. T., Syakura, M. A.,
Shanmuganathan, V., & de-la-Fuente-Valentín, L.
(2024). Comparative analysis of paraphrasing
performance of ChatGPT, GPT-3, and T5 language
models using a new ChatGPT generated dataset:
ParaGPT. Expert Systems, 41(11), e13699.
https://doi.org/10.1111/exsy.13699
Python Software Foundation. (2023). Python (Version
3.13) [Computer software]. Retrieved from
https://www.python.org
Ryu, J. (2020). Predicting second language writing
proficiency in the different genres of writing using
computational tools. Korean Journal of Applied
Linguistics, 36(1), 141-170.
Salman, M., Haller, A., & Méndez, S. J. R. (2023).
Syntactic complexity identification, measurement, and
reduction through controlled syntactic simplification.
arXiv preprint arXiv:2304.07774.
Salton, G., Wong, A., & Yang, C. S. (1975). A vector space
model for automatic indexing. Communications of the
ACM, 18(11), 613–620. https://doi.org/10.1145/3612
19.361220
Vrbanec, T., & Meštrović, A. (2021). Relevance of
similarity measures usage for paraphrase detection. In
Proceedings of the 13th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K 2021) - Volume 1:
KDIR (pp. 129–138). SCITEPRESS. https://doi.org/
10.5220/0010649800003064
Wahyuni, T. S., & Purwanto, K. K. (2020). Students’
conceptual understanding on acid-base titration and its
relationship with drawing skills on a titration curve.
Journal of Physics: Conference Series, 1440(1),
012018. IOP Publishing. https://doi.org/10.1088/1742-
6596/1440/1/012018]
Warschauer, M., Pasquier, A., & Grin, F. (2023). The
affordances and contradictions of AI-generated text for
writers of English as a second or foreign language.
Patterns, 4(7), Article 100779. https://doi.org/10.1016/
j.patter.2023.100779