
Grundstr
¨
om, J., Konttinen, H., Berg, N., and Kiviruusu, O.
(2021). Associations between relationship status and
mental well-being in different life phases from young
to middle adulthood. SSM - Population Health, 14.
Hong, J., Kim, J., Kim, S., Oh, J., Lee, D., Lee, S., Uh,
J., Yoon, J., and Choi, Y. (2022). Depressive symp-
toms feature-based machine learning approach to pre-
dicting depression using smartphone. Healthcare,
10(7):1189.
Irwin, M. R. (2015). Why sleep is important for health: A
psychoneuroimmunology perspective. Annual Review
of Psychology, 66(1):143–172.
Javaid, S., Khan, M., and Daniyal, M. (2022). The re-
lationship between cellphone usage on the physical
and mental wellbeing of university students: A cross-
sectional study. International Journal of Environmen-
tal Research and Public Health, 19.
Kazantzis, N., Luong, H., Usatoff, A., Impala, T., Yew, R.,
and Hofmann, S. (2018). The processes of cognitive
behavioral therapy: A review of meta-analyses. Cog-
nitive Therapy and Research, 42.
Kessler, R., Berglund, P., Bruce, M., Koch, J., Laska, E.,
Leaf, P., Manderscheid, R., Rosenheck, R., Walters,
E., and Wang, P. (2002). The prevalence and correlates
of untreated serious mental illness. Health services
research, 36:987–1007.
Klein, F., Aschwege, F. M.-V., Elfert, P., R
¨
aker, J.,
Philipsen, A., Braun, N., Selaskowski, B., Wiebe, A.,
Guth, M., Spallek, J., Seuss, S., Storey, B., Geppert,
L. N., L
¨
uck, I., and Hein, A. (2023). Developing ad-
vanced ai ecosystems to enhance diagnosis and care
for patients with depression. Studies in Health Tech-
nology and Informatics, 309:18–22.
Klimstra, T. A., Frijns, T., Keijsers, L., Denissen, J. J. A.,
Raaijmakers, Q. A. W., van Aken, M. A. G., Koot,
H. M., van Lier, P. A. C., and Meeus, W. H. J. (2011).
Come rain or come shine: individual differences in
how weather affects mood. Emotion, 11(6):1495–
1499.
Kroenke, K., Spitzer, R. L., and Williams, J. B. (2001). The
phq-9. Journal of General Internal Medicine, 16:606–
613.
Kvam, S., Kleppe, C. L., Nordhus, I. H., and Hovland,
A. (2016). Exercise as a treatment for depression:
A meta-analysis. Journal of Affective Disorders,
202:67–86.
Masud, M., Mamun, M., Thappa, K., Lee, D., Griffiths,
M., and Yang, S.-H. (2020). Unobtrusive monitoring
of behavior and movement patterns to detect clinical
depression severity level via smartphone. Journal of
Biomedical Informatics, 103:103371.
MindDoc (2023). Mental health support and therapy online.
https://minddoc.com/de/de/. Accessed: 2024-10-08.
Mohr, D., Zhang, M., and Schueller, S. (2017). Personal
sensing: Understanding mental health using ubiqui-
tous sensors and machine learning. Annual review of
clinical psychology, 13.
Nahum-Shani, I., Smith, S., Spring, B., Collins, L.,
Witkiewitz, K., Tewari, A., and Murphy, S. (2016).
Just-in-time adaptive interventions (jitais) in mobile
health: Key components and design principles for on-
going health behavior support. Annals of Behavioral
Medicine, 52.
Nationale Versorgungsleitlinien (2024). Nationale ver-
sorgungsleitlinie unipolare depression - langfas-
sung. https://www.leitlinien.de/themen/depression/
version-3. Accessed: 2024-03-05.
Neyer, F. J., Felber, J., and Gebhardt, C. (2016). Kurzskala
technikbereitschaft (tb, technology commitment).
Zusammenstellung sozialwissenschaftlicher Items
und Skalen (ZIS). DOI: 10.6102/zis244.
Posner, J., Russell, J., and Peterson, B. (2005). The circum-
plex model of affect: An integrative approach to af-
fective neuroscience, cognitive development, and psy-
chopathology. Development and Psychopathology,
17:715–734.
Razavi, R., Gharipour, A., and Gharipour, M. (2020). De-
pression screening using mobile phone usage meta-
data: a machine learning approach. Journal of the
American Medical Informatics Association: JAMIA,
27.
Rykov, Y., Thach, T.-Q., Bojic, I., Christopoulos, G.,
and Car, J. (2021). Digital biomarkers for depres-
sion screening with wearable devices: Cross-sectional
study with machine learning modeling. JMIR mHealth
and uHealth, 9.
Schuller, B. (2018). Speech emotion recognition: Two
decades in a nutshell, benchmarks, and ongoing
trends. Communications of the ACM, 61(5):90–99.
Short, M. and Louca, M. (2015). Sleep deprivation leads to
mood deficits in healthy adolescents. Sleep Medicine,
16.
Stanton, R. and Reaburn, P. (2014). Exercise and the treat-
ment of depression: A review of the exercise program
variables. Journal of Science and Medicine in Sport,
17(2):177–182.
Taniguchi, K., Takano, M., Tobari, Y., Hayano, M., Naka-
jima, S., Mimura, M., Tsubota, K., and Noda, Y.
(2022). Influence of external natural environment in-
cluding sunshine exposure on public mental health: A
systematic review. Psychiatry International.
Taylor, S., Ferguson, C., Peng, F., Schoeneich, M., and
Picard, R. (2018). Use of in-game rewards to moti-
vate daily self-report compliance (preprint). Journal
of Medical Internet Research, 21.
Thorisdottir, I. E., Sigurvinsdottir, R., Asgeirsdottir, B. B.,
Allegrante, J. P., and Sigfusdottir, I. D. (2019). Active
and passive social media use and symptoms of anxi-
ety and depressed mood among icelandic adolescents.
Cyberpsychology, behavior and social networking.
Torous, J., Larsen, M., Depp, C., Cosco, T., Barnett, I.,
Nock, M., and Firth, J. (2018). Smartphones, sensors,
and machine learning to advance real-time prediction
and interventions for suicide prevention: a review of
current progress and next steps. Current Psychiatry
Reports, 20:51.
Umberson, D. and Montez, J. (2010). Social relationships
and health a flashpoint for health policy. Journal of
health and social behavior, 51 Suppl:S54–66.
WHO (2023). World health organization - depres-
sion. https://www.who.int/news-room/fact-sheets/
detail/depression. Accessed: 2024-09-16.
HEALTHINF 2025 - 18th International Conference on Health Informatics
788