
Chen, R. J., Ding, T., Lu, M. Y., Williamson, D. F., Jaume,
G., Song, A. H., Chen, B., Zhang, A., Shao, D., Sha-
ban, M., et al. (2024a). Towards a general-purpose
foundation model for computational pathology. Na-
ture Medicine, 30(3):850–862.
Chen, W., Liu, J., Chow, T. W., and Yuan, Y. (2024b).
Star-rl: Spatial-temporal hierarchical reinforcement
learning for interpretable pathology image super-
resolution. IEEE Transactions on Medical Imaging.
Cornish, T. C., Swapp, R. E., and Kaplan, K. J. (2012).
Whole-slide imaging: routine pathologic diagnosis.
Advances in anatomic pathology, 19(3):152–159.
Cui, M. and Zhang, D. Y. (2021). Artificial intelligence and
computational pathology. Laboratory Investigation,
101(4):412–422.
Dong, N., Kampffmeyer, M., Liang, X., Wang, Z., Dai, W.,
and Xing, E. (2018). Reinforced auto-zoom net: to-
wards accurate and fast breast cancer segmentation in
whole-slide images. In Deep Learning in Medical
Image Analysis and Multimodal Learning for Clin-
ical Decision Support: 4th International Workshop,
DLMIA 2018, and 8th International Workshop, ML-
CDS 2018, Held in Conjunction with MICCAI 2018,
Granada, Spain, September 20, 2018, Proceedings 4,
pages 317–325. Springer.
Han, D., Mulyana, B., Stankovic, V., and Cheng, S. (2023).
A survey on deep reinforcement learning algorithms
for robotic manipulation. Sensors, 23(7):3762.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.
Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab,
A. A., Yogamani, S., and P
´
erez, P. (2021). Deep rein-
forcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Sys-
tems, 23(6):4909–4926.
Liu, Z.-B., Pang, X., Wang, J., Liu, S., and Li, C. (2024).
Histogym: A reinforcement learning environment
for histopathological image analysis. arXiv preprint
arXiv:2408.08847.
Mnih, V. (2013). Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. na-
ture, 518(7540):529–533.
Mohamad, M., Ponzio, F., Di Cataldo, S., Ambrosetti, D.,
and Descombes, X. (2024). Renal cell carcinoma sub-
typing: learning from multi-resolution localization.
arXiv preprint arXiv:2411.09471.
Mukherjee, L., Bui, H. D., Keikhosravi, A., Loeffler, A.,
and Eliceiri, K. W. (2019). Super-resolution recurrent
convolutional neural networks for learning with multi-
resolution whole slide images. Journal of biomedical
optics, 24(12):126003–126003.
Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., and
Madabhushi, A. (2007). Gland segmentation and
computerized gleason grading of prostate histology by
integrating low-, high-level and domain specific infor-
mation. In MIAAB workshop, pages 1–8. Citeseer.
Pantanowitz, L., Valenstein, P. N., Evans, A. J., Kaplan,
K. J., Pfeifer, J. D., Wilbur, D. C., Collins, L. C., and
Colgan, T. J. (2011). Review of the current state of
whole slide imaging in pathology. Journal of pathol-
ogy informatics, 2(1):36.
Ponzio, F., Descombes, X., and Ambrosetti, D. (2023). Im-
proving cnns classification with pathologist-based ex-
pertise: the renal cell carcinoma case study. Scientific
Reports, 13(1):15887.
Qaiser, T. and Rajpoot, N. M. (2019). Learning where to
see: a novel attention model for automated immuno-
histochemical scoring. IEEE transactions on medical
imaging, 38(11):2620–2631.
Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015).
Universal value function approximators. In Interna-
tional conference on machine learning, pages 1312–
1320. PMLR.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization al-
gorithms. arXiv preprint arXiv:1707.06347.
Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X.,
et al. (2021). Transmil: Transformer based correlated
multiple instance learning for whole slide image clas-
sification. Advances in neural information processing
systems, 34:2136–2147.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement learn-
ing: An introduction. MIT press.
Vance, G. H., Barry, T. S., Bloom, K. J., Fitzgibbons, P. L.,
Hicks, D. G., Jenkins, R. B., Persons, D. L., Tubbs,
R. R., and Hammond, M. E. H. (2009). Genetic het-
erogeneity in her2 testing in breast cancer: panel sum-
mary and guidelines. Archives of pathology & labora-
tory medicine, 133(4):611–612.
Wang, Z., Dong, N., Dai, W., Rosario, S. D., and Xing, E. P.
(2018). Classification of breast cancer histopatho-
logical images using convolutional neural networks
with hierarchical loss and global pooling. In Inter-
national conference image analysis and recognition,
pages 745–753. Springer.
Xu, H., Usuyama, N., Bagga, J., Zhang, S., Rao, R., Nau-
mann, T., Wong, C., Gero, Z., Gonz
´
alez, J., Gu, Y.,
et al. (2024). A whole-slide foundation model for dig-
ital pathology from real-world data. Nature, pages 1–
8.
Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Rad-
ford, A., Amodei, D., Christiano, P., and Irving, G.
(2019). Fine-tuning language models from human
preferences. arXiv preprint arXiv:1909.08593.
Investigating Reinforcement Learning for Histopathological Image Analysis
375