
tern Analysis and Machine Intelligence, 39(12):2481–
2495.
Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.
(2017). Rethinking atrous convolution for semantic
image segmentation. arXiv:1706.05587.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous sep-
arable convolution for semantic image segmentation.
In ECCV.
Chen, Z., Wang, C., Guo, Y.-C., and Zhang, S.-H. (2023).
Structnerf: Neural radiance fields for indoor scenes
with structural hints. IEEE Trans. on Pattern Analysis
and Machine Intelligence.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In IEEE Conf. on Computer Vision
and Pattern Recognition, pages 248–255.
Deng, K., Liu, A., Zhu, J.-Y., and Ramanan, D. (2022).
Depth-supervised nerf: Fewer views and faster train-
ing for free. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12882–12891.
Gasperini, S., Morbitzer, N., Jung, H., Navab, N., and
Tombari, F. (2023). Robust monocular depth estima-
tion under challenging conditions. In Proc. IEEE/CVF
Int. Conf. on Computer Vision, pages 8177–8186.
Gu, K., Maugey, T., Knorr, S., and Guillemot, C. (2022).
Omni-nerf: neural radiance field from 360 image cap-
tures. In IEEE Int. Conf. on Multimedia and Expo
(ICME).
He, K., Sun, J., and Tang, X. (2012). Guided image filtering.
IEEE transactions on pattern analysis and machine
intelligence, 35(6):1397–1409.
Jain, A., Tancik, M., and Abbeel, P. (2021). Putting nerf on
a diet: Semantically consistent few-shot view synthe-
sis. In Proc. IEEE/CVF International Conference on
Computer Vision, pages 5885–5894.
Kim, M., Seo, S., and Han, B. (2022). Infonerf: Ray en-
tropy minimization for few-shot neural volume ren-
dering. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12912–12921.
Kulkarni, S., Yin, P., and Scherer, S. (2023). 360fusionnerf:
Panoramic neural radiance fields with joint guidance.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 7202–7209.
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2021). Nerf: Repre-
senting scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106.
Ming, Y., Meng, X., Fan, C., and Yu, H. (2021). Deep
learning for monocular depth estimation: A review.
Neurocomputing, 438:14–33.
M
¨
uller, T., Evans, A., Schied, C., and Keller, A. (2022).
Instant neural graphics primitives with a multiresolu-
tion hash encoding. ACM Trans. on Graphics (TOG),
41(4):1–15.
Niemeyer, M., Barron, J. T., Mildenhall, B., Sajjadi, M. S.,
Geiger, A., and Radwan, N. (2022). Regnerf: Reg-
ularizing neural radiance fields for view synthesis
from sparse inputs. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
5480–5490.
Rabby, A. and Zhang, C. (2023). Beyondpixels: A com-
prehensive review of the evolution of neural radiance
fields. arXiv:2306.03000.
Rematas, K., Liu, A., Srinivasan, P. P., Barron, J. T.,
Tagliasacchi, A., Funkhouser, T., and Ferrari, V.
(2022). Urban radiance fields. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 12932–12942.
Roessle, B., Barron, J. T., Mildenhall, B., Srinivasan, P. P.,
and Nießner, M. (2022). Dense depth priors for neural
radiance fields from sparse input views. In Proc. Int.
Conf. on Computer Vision and Pattern Recognition.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In Proc. 18th Int. Conf. on Medical image
computing and computer-assisted intervention (MIC-
CAI), pages 234–241.
Szeliski, R. (2022). Computer vision: algorithms and ap-
plications. Springer Nature.
Tancik, M., Weber, E., Ng, E., Li, R., Yi, B., Wang, T.,
Kristoffersen, A., Austin, J., Salahi, K., Ahuja, A.,
et al. (2023). Nerfstudio: A modular framework
for neural radiance field development. In ACM SIG-
GRAPH 2023 Conference Proceedings, pages 1–12.
Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for
gray and color images. In Proc. IEEE/CVF Interna-
tional Conference on Computer Vision.
Wang, C., Sun, J., Liu, L., Wu, C., Shen, Z., Wu, D., Dai,
Y., and Zhang, L. (2023a). Digging into depth priors
for outdoor neural radiance fields. In Proc. 31st ACM
Int. Conference on Multimedia, pages 1221–1230.
Wang, G., Wang, P., Chen, Z., Wang, W., Loy, C. C., and
Liu, Z. (2023b). Perf: Panoramic neural radiance field
from a single panorama. arXiv:2310.16831.
Wang, J., Wang, P., Long, X., Theobalt, C., Komura, T.,
Liu, L., and Wang, W. (2022). Neuris: Neural recon-
struction of indoor scenes using normal priors. In Eu-
ropean Conference on Computer Vision, pages 139–
155. Springer.
Wang, Y., Xu, J., Zeng, Y., and Gong, Y. (2023c).
Anisotropic neural representation learning for high-
quality neural rendering. arXiv:2311.18311.
Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., and Zhou, J.
(2021). Nerfingmvs: Guided optimization of neural
radiance fields for indoor multi-view stereo. In Proc.
IEEE/CVF International Conference on Computer Vi-
sion, pages 5610–5619.
Yu, A., Ye, V., Tancik, M., and Kanazawa, A. (2021). pix-
elnerf: Neural radiance fields from one or few im-
ages. In Proc. IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4578–4587.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
734