
REFERENCES
Aldoj, N., Biavati, F., Michallek, F., Stober, S., and Dewey,
M. (2020). Automatic prostate and prostate zones
segmentation of magnetic resonance images using
densenet-like u-net. Scientific reports, 10(1):14315.
Arvaniti, E., Fricker, N., Moret, M., Rupp, N., Hermanns,
T., Fankhauser, C., Wey, N., Wild, P. J., Rueschoff,
J. H., and Claassen, M. (2018). Automated gleason
grading of prostate cancer tissue microarrays via deep
learning. Scientific reports, 8(1):1–11.
Brazil (2002). Programa Nacional de Controle de C
ˆ
ancer
da Pr
´
ostata: Documento de Consenso. INCA,
Bras
´
ılia, 1 edition. 1ª ed.
Bulten, W., Kartasalo, K., Chen, P., et al. (2022). Arti-
ficial intelligence for diagnosis and gleason grading
of prostate cancer: the panda challenge. Nat Med,
28:154–163. Accessed on 14/02/2024.
Chiao, J.-Y., Chen, K.-Y., Liao, K. Y.-K., Hsieh, P.-H.,
Zhang, G., and Huang, T.-C. (2019). Detection and
classification the breast tumors using mask r-cnn on
sonograms. Medicine, 98(19).
dos Santos, D. F., de Faria, P. R., Travenc¸olo, B. A., and
do Nascimento, M. Z. (2021). Automated detec-
tion of tumor regions from oral histological whole
slide images using fully convolutional neural net-
works. Biomedical Signal Processing and Control,
69:102921.
dos Santos, D. F. D., de Faria, P. R., Travenc¸olo, B. A. N.,
and do Nascimento, M. Z. (2023). Influence of data
augmentation strategies on the segmentation of oral
histological images using fully convolutional neural
networks. Journal of Digital Imaging.
Ghose, S., Oliver, A., Mart
´
ı, R., Llad
´
o, X., Vilanova, J. C.,
Freixenet, J., Mitra, J., Sidib
´
e, D., and Meriaudeau,
F. (2012). A survey of prostate segmentation method-
ologies in ultrasound, magnetic resonance and com-
puted tomography images. Computer Methods and
Programs in Biomedicine, 108(1):262–287. Accessed
on 11/02/2024.
Gonzalez, R. C. and Woods, R. E. (2008). Digital image
processing. Prentice Hall, Upper Saddle River, N.J.
Haykin, S. (1998). Neural networks: a comprehensive foun-
dation. Prentice Hall PTR.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Humphrey, P. (2004). Gleason grading and prognostic fac-
tors in carcinoma of the prostate. Mod Pathol, 17:292–
306. Published: 13 February 2004, Issue Date: 01
March 2004.
Kaggle (2023). Kaggle. https://www.kaggle.com/c/
prostate-cancer-grade-assessment. Accessed on 14
February 2024.
Kang, K. and Wang, X. (2014). Fully convolutional neu-
ral networks for crowd segmentation. arXiv preprint
arXiv:1411.4464.
Kyle, K. Y. and Hricak, H. (2000). Imaging prostate cancer.
Radiologic Clinics of North America, 38(1):59–85.
LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Con-
volutional networks and applications in vision. In Pro-
ceedings of 2010 IEEE International Symposium on
Circuits and Systems, pages 253–256.
Loeb, S., Bjurlin, M. A., Nicholson, J., Tammela, T. L.,
Penson, D. F., Carter, H. B., Carroll, P., and Etzioni, R.
(2014). Overdiagnosis and overtreatment of prostate
cancer. European urology, 65(6):1046–1055.
Lu, Y., Jiang, Z., Zhou, T., and Fu, S. (2019). An improved
watershed segmentation algorithm of medical tumor
image. In IOP conference series: materials science
and engineering, volume 677, page 042028. IOP Pub-
lishing.
Rodrigues, L. F., Backes, A. R., Travenc¸olo, B. A. N., and
de Oliveira, G. M. B. (2022). Optimizing a deep resid-
ual neural network with genetic algorithm for acute
lymphoblastic leukemia classification. Journal of Dig-
ital Imaging, 35(3):623–637.
Silva-Rodr
´
ıguez, J., Colomer, A., Sales, M. A., Molina, R.,
and Naranjo, V. (2020). Going deeper through the
gleason scoring scale: An automatic end-to-end sys-
tem for histology prostate grading and cribriform pat-
tern detection. Computer methods and programs in
biomedicine, 195:105637.
Society, A. C. (2023). Facts & figures 2023.
https://www.cancer.org/cancer/prostate-cancer/
about/key-statistics.html. Accessed: [02 November
2021].
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2016). Rethinking the inception architecture for
computer vision. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818–
2826.
Tian, Z., Liu, L., and Fei, B. (2015). A fully automatic
multi-atlas based segmentation method for prostate mr
images. In Medical Imaging 2015: Image Processing,
volume 9413, pages 1067–1073. SPIE.
Toth, R. J., Shih, N., Tomaszewski, J. E., Feldman, M. D.,
Kutter, O., Daphne, N. Y., Paulus Jr, J. C., Pala-
dini, G., and Madabhushi, A. (2014). Histostitcher™:
An informatics software platform for reconstructing
whole-mount prostate histology using the extensible
imaging platform framework. Journal of Pathology
Informatics, 5(1):8.
Tsung-Yi Lin, M. (2015). Microsoft coco: Common objects
in context. Computer Vision and Pattern Recognition
(cs. CV), 1405.
Wu, Y. et al. (2021). Github. https://detectron2.readthedocs.
io/en/latest/. Accessed on 23 November 2023.
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R.
(2019). Detectron2: A pytorch-based modular object
detection library. arXiv preprint arXiv:1904.04514.
Yan, K., Li, C., Wang, X., Li, A., Yuan, Y., Feng, D.,
Khadra, M., and Kim, J. (2016). Automatic prostate
segmentation on mr images with deep network and
graph model. In 2016 38th Annual international con-
ference of the IEEE engineering in medicine and biol-
ogy society (EMBC), pages 635–638. IEEE.
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
706