
Hamani, C. and N
´
obrega, J. N. (2010). Deep brain stimula-
tion in clinical trials and animal models of depression.
European Journal of Neuroscience, 32(7):1109–1117.
Harmsen, I. E., Elias, G. J., Beyn, M. E., Boutet, A., Pan-
choli, A., Germann, J., Mansouri, A., Lozano, C. S.,
and Lozano, A. M. (2020). Clinical trials for deep
brain stimulation: Current state of affairs. Brain Stim-
ulation, 13(2):378–385.
Hasgall, P., Di Gennaro, F., Baumgartner, C., Neufeld, E.,
Lloyd, B., Gosselin, M., Payne, D., Klingenb
¨
ock, A.,
and Kuster, N. (2022). It’is database for thermal and
electromagnetic parameters of biological tissues, ver-
sion 4.1.
Heerdegen, M., Zwar, M., Franz, D., H
¨
ornschemeyer, M. F.,
Neubert, V., Plocksties, F., Niemann, C., Timmer-
mann, D., Bahls, C., van Rienen, U., et al. (2021).
Mechanisms of pallidal deep brain stimulation: Al-
teration of cortico-striatal synaptic communication in
a dystonia animal model. Neurobiology of Disease,
154:105341.
Heo, M. S., Moon, H. S., Kim, H. C., Park, H. W., Lim,
Y. H., and Paek, S. H. (2015). Fully implantable deep
brain stimulation system with wireless power trans-
mission for long-term use in rodent models of parkin-
son’s disease. Journal of Korean Neurosurgical Soci-
ety, 57(3):152–158.
Huang, C. Q., Carter, P. M., and Shepherd, R. K. (2001).
Stimulus induced ph changes in cochlear implants: an
in vitro and in vivo study. Annals of biomedical engi-
neering, 29:791–802.
Hui, D., Murgai, A. A., Gilmore, G., Mohideen, S. I., Par-
rent, A. G., and Jog, M. S. (2020). Assessing the effect
of current steering on the total electrical energy deliv-
ered and ambulation in parkinson’s disease. Scientific
Reports, 10(1):8256.
Jakobs, M., Fomenko, A., Lozano, A. M., and Kiening,
K. L. (2019). Cellular, molecular, and clinical mech-
anisms of action of deep brain stimulation—a sys-
tematic review on established indications and outlook
on future developments. EMBO molecular medicine,
11(4):e9575.
Kandadai, R. M., Meka, S. S., Kola, S., Alugolu, R., and
Borgohain, R. (2023). Constant current versus con-
stant voltage dbs stimulators—changing trend. Annals
of Indian Academy of Neurology, 26(4):368–369.
Klinder, A., Moews, F., Ziebart, J., Su, Y., Gabler, C.,
Jonitz-Heincke, A., van Rienen, U., Ellenrieder, M.,
and Bader, R. (2024). Effects of electrical stim-
ulation with alternating fields on the osseointegra-
tion of titanium implants in the rabbit tibia-a pilot
study. Frontiers in Bioengineering and Biotechnol-
ogy, 12:1395715.
Koessler, L., Colnat-Coulbois, S., Cecchin, T., Hofmanis,
J., Dmochowski, J. P., Norcia, A. M., and Maillard,
L. G. (2017). In-vivo measurements of human brain
tissue conductivity using focal electrical current in-
jection through intracerebral multicontact electrodes.
Human brain mapping, 38(2):974–986.
Koschay, M., Richter, H., Statz, M., Kober, M., Puschmann,
J., Plocksties, F., Storch, A., K
¨
uhn, V., and Timmer-
mann, D. (2022). Case-study on visible light com-
munication for implant monitoring. In 2022 IEEE
Biomedical Circuits and Systems Conference (Bio-
CAS), pages 275–279. IEEE.
Kouzani, A. Z., Kale, R. P., Zarate-Garza, P. P., Berk,
M., Walder, K., and Tye, S. J. (2017). Validation of
a portable low-power deep brain stimulation device
through anxiolytic effects in a laboratory rat model.
IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, 25(9):1365–1374.
K
¨
olbl, F., N’Kaoua, G., Naudet, F., Berthier, F., Fag-
giani, E., Renaud, S., Benazzouz, A., and Lewis,
N. (2016). An embedded deep brain stimulator for
biphasic chronic experiments in freely moving ro-
dents. IEEE Transactions on Biomedical Circuits and
Systems, 10(1):72–84.
Lamy, C. and Millet, P. (2020). A critical review on the def-
initions used to calculate the energy efficiency coeffi-
cients of water electrolysis cells working under near
ambient temperature conditions. Journal of power
sources, 447:227350.
Leblois, A., Reese, R., Labarre, D., Hamann, M., Richter,
A., Boraud, T., and Meissner, W. G. (2010). Deep
brain stimulation changes basal ganglia output nuclei
firing pattern in the dystonic hamster. Neurobiology of
disease, 38(2):288–298.
Lempka, S. F., Johnson, M. D., Miocinovic, S., Vitek, J. L.,
and McIntyre, C. C. (2010). Current-controlled deep
brain stimulation reduces in vivo voltage fluctuations
observed during voltage-controlled stimulation. Clin-
ical Neurophysiology, 121(12):2128–2133.
Lempka, S. F., Miocinovic, S., Johnson, M. D., Vitek, J. L.,
and McIntyre, C. C. (2009). In vivo impedance spec-
troscopy of deep brain stimulation electrodes. Journal
of neural engineering, 6(4):046001.
Liu, H., Wang, C., Zhang, F., and Jia, H. (2017). An im-
plantable device for neuropsychiatric rehabilitation by
chronic deep brain stimulation in freely moving rats.
NeuroReport, 28(3):128–133.
Merrill, D. R., Bikson, M., and Jefferys, J. G. (2005). Elec-
trical stimulation of excitable tissue: design of effi-
cacious and safe protocols. Journal of neuroscience
methods, 141(2):171–198.
Millard, R. E. and Shepherd, R. K. (2007). A fully im-
plantable stimulator for use in small laboratory ani-
mals. Journal of neuroscience methods, 166(2):168–
177.
Neumann, W.-J., Gilron, R., Little, S., and Tinkhauser, G.
(2023). Adaptive deep brain stimulation: From ex-
perimental evidence toward practical implementation.
Movement disorders, 38(6):937–948.
Nicksic, P. J., Donnelly, D. T., Verma, N., Setiz, A. J.,
Shoffstall, A. J., Ludwig, K. A., Dingle, A. M., and
Poore, S. O. (2022). Electrical stimulation of acute
fractures: A narrative review of stimulation protocols
and device specifications. Frontiers in Bioengineering
and Biotechnology, 10:879187.
Paap, M., Perl, S., L
¨
uttig, A., Plocksties, F., Niemann, C.,
Timmermann, D., Bahls, C., van Rienen, U., Franz,
D., Zwar, M., Rohde, M., K
¨
ohling, R., and Richter,
A. (2021). Deep brain stimulation by optimized stim-
ulators in a phenotypic model of dystonia: Effects
BIODEVICES 2025 - 18th International Conference on Biomedical Electronics and Devices
86