Wyse, R. K., & Taylor, K. M. (2002, September). Using the
STS and multinational cardiac surgical databases to
establish risk-adjusted benchmarks for clinical
outcomes. In The heart surgery forum (Vol. 5, No. 3,
pp. E258-E264).
Stewart, J. M. (2016). Abstraction techniques for the STS
national database. The Journal of ExtraCorporeal
Technology, 48(4), 201-203.
Miele, F. (2024). Reframing Algorithms: STS perspectives
to Healthcare Automation. Springer Nature.
Orfanoudaki, A., Dearani, J. A., Shahian, D. M., Badhwar,
V., Fernandez, F., Habib, R., ... & Bertsimas, D. (2022).
Improving quality in cardiothoracic surgery: Exploiting
the untapped potential of machine learning. The Annals
of Thoracic Surgery, 114(6), 1995-2000.
Falcoz, P. E., Conti, M., Brouchet, L., Chocron, S.,
Puyraveau, M., Mercier, M., ... & Dahan, M. (2007).
The Thoracic Surgery Scoring System (Thoracoscore):
risk model for in-hospital death in 15,183 patients
requiring thoracic surgery. The Journal of Thoracic and
Cardiovascular Surgery, 133(2), 325-332.
Holmes, D. R., Nishimura, R. A., Grover, F. L., Brindis, R.
G., Carroll, J. D., Edwards, F. H., ... & STS/ACC TVT
Registry. (2015). Annual outcomes with transcatheter
valve therapy: from the STS/ACC TVT registry.
Journal of the American College of Cardiology, 66(25),
2813-2823.
Sorajja, P., Vemulapalli, S., Feldman, T., Mack, M.,
Holmes, D. R., Stebbins, A., ... & Ailawadi, G. (2017).
Outcomes with transcatheter mitral valve repair in the
United States: an STS/ACC TVT registry report.
Journal of the American College of Cardiology, 70(19),
2315-2327.
Carroll, J. D., Mack, M. J., Vemulapalli, S., Herrmann, H.
C., Gleason, T. G., Hanzel, G., ... & Bavaria, J. E.
(2020). STS-ACC TVT registry of transcatheter aortic
valve replacement. Journal of the American College of
Cardiology, 76(21), 2492-2516.
Gandhi, M., & Singh, S. N. (2015, February). Predictions
in heart disease using techniques of data mining.
In 2015 International conference on futuristic trends on
computational analysis and knowledge management
(ABLAZE) (pp. 520-525). IEEE.
Nelson, J. S., Jacobs, J. P., Bhamidipati, C. M., Yarboro, L.
T., Kumar, S. R., McDonald, D., ... & STS ACHD
Working Group. (2022). Assessment of current Society
of Thoracic Surgeons data elements for adults with
congenital heart disease. The Annals of Thoracic
Surgery, 114(6), 2323-2329.
Riehle‐Colarusso, T., Strickland, M. J., Reller, M. D.,
Mahle, W. T., Botto, L. D., Siffel, C., ... & Correa, A.
(2007). Improving the quality of surveillance data on
congenital heart defects in the metropolitan Atlanta
congenital defects program. Birth Defects Research
Part A: Clinical and Molecular Teratology, 79(11),
743-753.
Kilic, A., Goyal, A., Miller, J. K., Gjekmarkaj, E., Tam, W.
L., Gleason, T. G., ... & Dubrawksi, A. (2020).
Predictive utility of a machine learning algorithm in
estimating mortality risk in cardiac surgery. The Annals
of thoracic surgery, 109(6), 1811-1819.
Gaies, M., Donohue, J. E., Willis, G. M., Kennedy, A. T.,
Butcher, J., Scheurer, M. A., ... & Tabbutt, S. (2016).
Data integrity of the pediatric cardiac critical care
consortium (PC4) clinical registry. Cardiology in the
Young, 26(6), 1090-1096.
Scahill, C., Gaies, M., & Elhoff, J. (2022). Harnessing Data
to Drive Change: the Pediatric Cardiac Critical Care
Consortium (PC4) Experience. Current Treatment
Options in Pediatrics, 8(2), 49-63.
Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R., &
Stiawan, D. (2021). The Fast Health Interoperability
Resources (FHIR) standard: systematic literature
review of implementations, applications, challenges
and opportunities. JMIR medical informatics, 9(7),
e21929.
Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L.
(2023). Generative AI and ChatGPT: Applications,
challenges, and AI-human collaboration. Journal of
Information Technology Case and Application
Research, 25(3), 277-304.
Euchner, J. (2023). Generative ai. Research-Technology
Management, 66(3), 71-74.
Lv, Z. (2023). Generative artificial intelligence in the
metaverse era. Cognitive Robotics, 3, 208-217.
Zhang, P., & Kamel Boulos, M. N. (2023). Generative AI
in medicine and healthcare: promises, opportunities and
challenges. Future Internet, 15(9), 286.\
Shokrollahi, Y., Yarmohammadtoosky, S., Nikahd, M. M.,
Dong, P., Li, X., & Gu, L. (2023). A comprehensive
review of generative AI in healthcare. arXiv preprint
arXiv:2310.00795.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M.,
Blau, H. M., & Thrun, S. (2017). Dermatologist-level
classification of skin cancer with deep neural networks.
Nature, 542(7639), 115-118.
Topol, E. (2019). Deep medicine: how artificial intelligence
can make healthcare human again. Hachette UK.
Alpaydin, E. (2021). Machine learning. MIT press.
Alanazi, A. (2022). Using machine learning for healthcare
challenges and opportunities. Informatics in Medicine
Unlocked, 30, 100924.
Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning
for medical image processing: Overview, challenges
and the future. Classification in BioApps: Automation
of decision making, 323-350.
Li, J., Ma, Q., Chan, A. H., & Man, S. (2019). Health
monitoring through wearable technologies for older
adults: Smart wearables acceptance model. Applied
ergonomics, 75, 162-169.
Johnson, A. E., Pollard, T. J., & Mark, R. G. (2017,
November). Reproducibility in critical care: a mortality
prediction case study. In Machine learning for
healthcare conference (pp. 361-376). PMLR.
Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in
medical image analysis. Annual review of biomedical
engineering, 19(1), 221-248.
Using Artificial Intelligence and Large Language Models to Reduce the Burden of Registry Participation