
server loss function. Medical physics, 48(10):5727–
5742.
Jin, H., Yu, C., Gong, Z., Zheng, R., Zhao, Y., and Fu, Q.
(2023). Machine learning techniques for pulmonary
nodule computer-aided diagnosis using ct images: A
systematic review. Biomedical Signal Processing and
Control, 79:104104.
Kingma, D. P. (2014). Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980.
Kubo, T., Ohno, Y., Nishino, M., Lin, P.-J., Gautam, S.,
Kauczor, H.-U., Hatabu, H., iLEAD Study Group,
et al. (2016). Low dose chest ct protocol (50
´
amas)
as a routine protocol for comprehensive assessment of
intrathoracic abnormality. European Journal of Radi-
ology Open, 3:86–94.
Lehtinen, J. (2018). Noise2noise: Learning image
restoration without clean data. arXiv preprint
arXiv:1803.04189.
Livingstone, R. S., Pradip, J., Dinakran, P. M., and Srikanth,
B. (2010). Radiation doses during chest examina-
tions using dose modulation techniques in multislice
ct scanner. Indian Journal of Radiology and Imaging,
20(2):154–157.
Mail, T. B. (2013). Catphan® 500 and 600 manual. The
Phantom Laboratory.
Massoumzadeh, P., Don, S., Hildebolt, C. F., Bae, K. T., and
Whiting, B. R. (2009). Validation of ct dose-reduction
simulation. Medical physics, 36(1):174–189.
McKee, B. J., Hashim, J. A., French, R. J., McKee, A. B.,
Hesketh, P. J., Lamb, C. R., Williamson, C., Flacke,
S., and Wald, C. (2016). Experience with a ct screen-
ing program for individuals at high risk for developing
lung cancer. Journal of the American College of Ra-
diology, 13(2):R8–R13.
Mentl, K., Mailh
´
e, B., Ghesu, F. C., Schebesch, F., Hader-
lein, T., Maier, A., and Nadar, M. S. (2017). Noise re-
duction in low-dose ct using a 3d multiscale sparse de-
noising autoencoder. In 2017 IEEE 27th International
Workshop on Machine Learning for Signal Processing
(MLSP), pages 1–6. IEEE.
Sadia, R. T., Chen, J., and Zhang, J. (2024). Ct image de-
noising methods for image quality improvement and
radiation dose reduction. Journal of Applied Clinical
Medical Physics, 25(2):e14270.
Samei, E., Bakalyar, D., Boedeker, K. L., Brady, S., Fan, J.,
Leng, S., Myers, K. J., Popescu, L. M., Ramirez Gi-
raldo, J. C., Ranallo, F., et al. (2019). Performance
evaluation of computed tomography systems: sum-
mary of aapm task group 233. Medical physics,
46(11):e735–e756.
Scapicchio, C., Imbriani, M., Lizzi, F., Quattrocchi, M.,
Retico, A., Saponaro, S., Tenerani, M. I., Tofani, A.,
Zafaranchi, A., and Fantacci, M. E. (2024a). Char-
acterization and quantification of image quality in
ct imaging systems: A phantom study. Proceed-
ings of the 17th International Joint Conference on
Biomedical Engineering Systems and Technologies -
BIOIMAGING.
Scapicchio, C., Imbriani, M., Lizzi, F., Quattrocchi, M.,
Retico, A., Saponaro, S., Tenerani, M. I., Tofani, A.,
Zafaranchi, A., and Fantacci, M. E. (2024b). Inves-
tigation of a potential upstream harmonization based
on image appearance matching to improve radiomics
features robustness: a phantom study. Biomedical
Physics & Engineering Express, 10(4):045006.
Team, N. L. S. T. R. (2011). Reduced lung-cancer mortality
with low-dose computed tomographic screening. New
England Journal of Medicine, 365(5):395–409.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: From error visi-
bility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612.
Wolf, A. M., Oeffinger, K. C., Shih, T. Y.-C., Walter, L. C.,
Church, T. R., Fontham, E. T., Elkin, E. B., Etzioni,
R. D., Guerra, C. E., Perkins, R. B., et al. (2024).
Screening for lung cancer: 2023 guideline update
from the american cancer society. CA: A Cancer Jour-
nal for Clinicians, 74(1):50–81.
Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2017).
Loss functions for image restoration with neural net-
works. IEEE Transactions on Computational Imag-
ing, 3(1):47–57.
Deep Learning Denoising of Low-Dose Computed Tomography Using Convolutional Autoencoder: A Phantom Study
385