
ACKNOWLEDGMENTS
This result has been partially supported
by grant PID2021-127275OB-I00, grant
PID2021-126363NB-I00 funded by MICI-
U/AEI/10.13039/501100011033 and by “ERDF
A way of making Europe”, grant PDC2023-145863-
I00 funded by MICIU/AEI/10.13039/501100011033
and by “European Union NextGenerationEU/PRTR”,
and grant M.2 PDC 000756 funded by Consejer
´
ıa
de Universidad, Investigaci
´
on e Innovaci
´
on and by
ERDF Andalusia Program 2021-2027.
REFERENCES
Abbott (2022). Sistema freestyle libre 3.
https://www.freestyle.abbott/es-es/productos/
freestylelibre-3.html. (Accessed on 11/10/2024).
Affleck, A., Parks, P., Drummond, A., Rowe, B. H., and
Ovens, H. J. (2013). Emergency department over-
crowding and access block. Canadian Journal of
Emergency Medicine, 15(6):359–370.
Bradley, J., Reberger, C., Dixit, A., Gupta, V., and
Macaulay, J. (2013). Internet of everything (ioe): top
10 insights from cisco’s ioe value at stake analysis for
the public sector. Economic Analysis, 1.
Chakraborty, S., Bhatt, V., and Chakravorty, T. (2020). Big-
data, iot wearable and mhealth cloud platform integra-
tion triads-a logical way to patient-health monitoring.
International Journal of Engineering and Advanced
Technology, 9(3):388–394.
Chiacchiaretta, P., Tumini, S., Mascitelli, A., Sacrini, L.,
Saltarelli, M. A., Carabotta, M., Osmelli, J., Di Carlo,
P., and Aruffo, E. (2024). The impact of atmospheric
temperature variations on glycaemic patterns in chil-
dren and young adults with type 1 diabetes. Climate,
12(8):121.
Elshahidi, M. H. (2019). Outdoor air pollution and ges-
tational diabetes mellitus: a systematic review and
meta-analysis. Iranian journal of public health,
48(1):9.
Helal, A., Cook, D. J., and Schmalz, M. (2009). Smart
home-based health platform for behavioral monitoring
and alteration of diabetes patients. Journal of diabetes
science and technology, 3(1):141–148.
International Diabetes Federation (2024). What is diabetes.
https://idf.org/about-diabetes/what-is-diabetes/. (Ac-
cessed on 11/09/2024).
L
´
opez Ruiz, J. L., Jim
´
enez Villar, J. M., Alb
´
ın Rodr
´
ıguez,
A. P., and Espinilla Estevez, M. (2024). Indoor area
location system using uwb technology and axis-linear
bounding boxes. In IEEE Congress on Evolutionary
Computation (IEEE CEC). IEEE Access.
Lupi
´
on, M., Redondo, J. L., Sanjuan, J. F., and Ortigosa,
P. M. (2020). Deployment of an iot platform for ac-
tivity recognition at the ual’s smart home. In Inter-
national Symposium on Ambient Intelligence, pages
82–92. Springer.
Martinez-Cruz, C., Rueda, A. J., Popescu, M., and Keller,
J. M. (2021). New linguistic description approach for
time series and its application to bed restlessness mon-
itoring for eldercare. IEEE Transactions on Fuzzy Sys-
tems, 30(4):1048–1059.
Murakami, A., Gutierrez, M., Lage, S., Rebelo, M.,
Guiraldelli, R., and Ramires, J. A. F. (2006). A con-
tinuous glucose monitoring system in critical cardiac
patients in the intensive care unit. In 2006 Computers
in Cardiology, pages 233–236. IEEE.
Open-Meteo (2024a). Free open-source weather api. https:
//open-meteo.com/. (Accessed on 10/31/2024).
Open-Meteo (2024b). Terms — open-meteo.com.
https://open-meteo.com/en/terms. (Accessed on
11/19/2024).
Pel
´
aez-Aguilera, M., Espinilla, M., Fern
´
andez, M., and
Medina, J. (2019). Fuzzy linguistic protoforms to
summarize heart rate streams of patients with is-
chemic heart disease. hindawi. Complexity.
Preston, E. V., Eberle, C., Brown, F. M., and James-Todd, T.
(2020). Climate factors and gestational diabetes mel-
litus risk–a systematic review. Environmental Health,
19:1–19.
Richardson, M. B., Chmielewski, C., Wu, C. Y., Evans,
M. B., McClure, L. A., Hosig, K. W., and Gohlke,
J. M. (2020). The effect of time spent outdoors during
summer on daily blood glucose and steps in women
with type 2 diabetes. Journal of behavioral medicine,
43:783–790.
Schmitter-Edgecombe, M., Luna, C., Dai, S., and Cook,
D. J. (2024). Predicting daily cognition and lifestyle
behaviors for older adults using smart home data and
ecological momentary assessment. The Clinical Neu-
ropsychologist, pages 1–25.
Sloss, L. L. and Smith, I. M. (2000). Pm10 and pm2. 5:
an international perspective. Fuel Processing Tech-
nology, 65:127–141.
Vallianou, N. G., Geladari, E. V., Kounatidis, D., Geladari,
C. V., Stratigou, T., Dourakis, S. P., Andreadis, E. A.,
and Dalamaga, M. (2021). Diabetes mellitus in the
era of climate change. Diabetes & Metabolism,
47(4):101205.
Vodrahalli, K., Lyng, G. D., Hill, B. L., Karkkainen, K.,
Hertzberg, J., Zou, J., and Halperin, E. (2023). Un-
derstanding and predicting the effect of environmental
factors on people with type 2 diabetes. In Conference
on Health, Inference, and Learning, pages 545–555.
PMLR.
World Health Organization (2024). Mean fast-
ing blood glucose. https://www.who.int/data/
gho/indicator-metadata-registry#:
∼
:text=Mean%
20fasting%20blood%20glucose. Accessed: 31
October 2024.
Zadeh, L. A. and Aliev, R. A. (2018). Fuzzy logic theory
and applications: part I and part II. World Scientific
Publishing.
HEALTHINF 2025 - 18th International Conference on Health Informatics
804