
REFERENCES
(2023). Synthetic Data Metrics. DataCebo, Inc. Version
0.12.0.
An, J. and Cho, S. (2015). Variational autoencoder based
anomaly detection using reconstruction probability.
Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein GAN. arXiv:1701.07875 [cs, stat].
Baldi, P. (2011). Autoencoders, unsupervised learning and
deep architectures. In Proceedings of the 2011 In-
ternational Conference on Unsupervised and Trans-
fer Learning workshop - Volume 27, UTLW’11, pages
37–50. JMLR.org.
Bank, D., Koenigstein, N., and Giryes, R. (2021). Autoen-
coders.
Berahmand, K., Daneshfar, F., Salehi, E. S., and Li, Y.
(2024). Autoencoders and their applications in ma-
chine learning: a survey. 57(2):28.
Donahue, C., McAuley, J., and Puckette, M. (2019). Ad-
versarial audio synthesis.
Fang, M. L., Dhami, D. S., and Kersting, K. (2022). DP-
CTGAN: Differentially private medical data genera-
tion using CTGANs. In Michalowski, M., Abidi, S.
S. R., and Abidi, S., editors, Artificial Intelligence
in Medicine, volume 13263, pages 178–188. Springer
International Publishing. Series Title: Lecture Notes
in Computer Science.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., and Xu, B.
(2014). Generative adversarial networks.
Jiang, B. and Li, P. (2024). Nonparametric crosstalk eval-
uation method using the kolmogorov-smirnov test.
In 2024 IEEE International Symposium on Electro-
magnetic Compatibility, Signal & Power Integrity
(EMC+SIPI), pages 617–622. ISSN: 2158-1118.
Jordon, J., Yoon, J., and Schaar, M. v. d. (2018). PATE-
GAN: Generating synthetic data with differential pri-
vacy guarantees.
Kabir, M. and Tomforde, S. (2024). A deep analysis
for medical emergency missing value imputation. In
Proceedings of the 16th International Conference on
Agents and Artificial Intelligence, pages 1229–1236.
SCITEPRESS - Science and Technology Publications.
Kabir, M. F., Aust, T., Cui, H., Botache, D., and Decke, J.
(2024). Organic Computing. kassel university press.
Lautrup, A. D., Hyrup, T., Zimek, A., and Schneider-Kamp,
P. (2024). SynthEval: A framework for detailed utility
and privacy evaluation of tabular synthetic data.
Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I.
(2016). Adversarial autoencoders.
Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2017).
Unrolled generative adversarial networks.
Nadamoto, A., Fukumoto, K., Takeuchi, R., and Terada, H.
(2023). Automatic generation of product descriptions
using deep learning methods. pages 134–148.
Ooko, S. O., Mukanyiligira, D., and Munyampundu, J. P.
(2021). Synthetic exhaled breath data-based edge AI
model for the prediction of chronic obstructive pul-
monary disease. In 2021 International Conference
on Computing and Communications Applications and
Technologies (I3CAT), pages 1–6.
Pezoulas, V. C., Zaridis, D. I., and Mylona, E. (2024). Syn-
thetic data generation methods in healthcare: A review
on open-source tools and methods. 23:2892–2910.
Piliuk, K. and Tomforde, S. (2023). Artificial intelligence in
emergency medicine. A systematic literature review.
Int. J. Medical Informatics, 180:105274.
Rajabi, A. and Garibay, O. O. (2021). TabFairGAN: Fair
tabular data generation with generative adversarial
networks.
Rosenblatt, L., Liu, X., Pouyanfar, S., Leon, E. d., Desai,
A., and Allen, J. (2020). Differentially private syn-
thetic data: applied evaluations and enhancements.
Rustad, A. (2022). tabGAN: A framework for utilizing
tabular GAN for data synthesizing and generation of
counterfactual explanations. Master’s thesis, NTNU.
Surendra, H. and Mohan, H. (2017). A review of synthetic
data generation methods for privacy preserving data
publishing.
Vie, J.-J., Rigaux, T., and Minn, S. (2022). Privacy-
preserving synthetic educational data generation. In
Hilliger, I., Mu
˜
noz-Merino, P. J., De Laet, T., Ortega-
Arranz, A., and Farrell, T., editors, Educating for a
New Future: Making Sense of Technology-Enhanced
Learning Adoption, pages 393–406. Springer Interna-
tional Publishing.
Werda, M. S., Taibi, H., Kouiss, K., and Chebak, A.
(2024). Generation of synthetic data for deep learn-
ing in manufacturing quality control systems. In 2024
IEEE 22nd Mediterranean Electrotechnical Confer-
ence (MELECON), pages 74–79. ISSN: 2158-8481.
Xu, L., Skoularidou, M., and Cuesta-Infante, A. (2019a).
Modeling tabular data using conditional GAN.
Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veera-
machaneni, K. (2019b). Modeling tabular data using
conditional GAN.
Yong, B. X. and Brintrup, A. (2022). Bayesian autoen-
coders with uncertainty quantification: Towards trust-
worthy anomaly detection. 209:118196.
Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). SeqGAN:
Sequence generative adversarial nets with policy gra-
dient.
Zhao, Z., Kunar, A., Birke, R., and Chen, L. Y. (2022).
CTAB-GAN+: Enhancing tabular data synthesis.
Zhao, Z., Kunar, A., Scheer, H. V. d., and Birke, R. (2021).
CTAB-GAN: Effective table data synthesizing.
APPENDIX
The tables below display the results of data fidelity
and privacy metrics for multiple dataset comparisons
across various models, including our proposed ap-
proach. In DCR, R means real, and S means Syn-
thetic.
Synthetic Data Generation for Emergency Medical Systems: A Systematic Comparison of Tabular GAN Extensions
1205