
validation for automated driving systems by using per-
ception performance insufficiencies injection. Vehicles,
6(3):1164–1184.
Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. (2016). Vir-
tual worlds as proxy for multi-object tracking analysis.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4340–4349.
Gauerhof, L., Hawkins, R., Picardi, C., Paterson, C., Hagi-
wara, Y., and Habli, I. (2020). Assuring the safety
of machine learning for pedestrian detection at cross-
ings. In Computer Safety, Reliability, and Security:
39th International Conference, SAFECOMP 2020, Lis-
bon, Portugal, September 16–18, 2020, Proceedings
39, pages 197–212. Springer.
Hawkins, R., Paterson, C., Picardi, C., Jia, Y., Calinescu,
R., and Habli, I. (2021). Guidance on the assurance
of machine learning in autonomous systems (amlas).
arXiv preprint arXiv:2102.01564.
Heidecker, F., Bieshaar, M., and Sick, B. (2024). Corner
cases in machine learning processes. AI Perspectives
& Advances, 6(1):1.
Hendrycks, D. and Gimpel, K. (2016). A baseline for detect-
ing misclassified and out-of-distribution examples in
neural networks. arXiv preprint arXiv:1610.02136.
Hu, A., Russell, L., Yeo, H., Murez, Z., Fedoseev, G.,
Kendall, A., Shotton, J., and Corrado, G. (2023). Gaia-
1: A generative world model for autonomous driving.
arXiv preprint arXiv:2309.17080.
H
¨
ullermeier, E. and Waegeman, W. (2021). Aleatoric and
epistemic uncertainty in machine learning: An intro-
duction to concepts and methods. Machine learning,
110(3):457–506.
Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N.,
Rosaen, K., and Vasudevan, R. (2016). Driving in the
matrix: Can virtual worlds replace human-generated
annotations for real world tasks? arXiv preprint
arXiv:1610.01983.
Keser, M., Savkin, A., and Tombari, F. (2021). Content
disentanglement for semantically consistent synthetic-
to-real domain adaptation. In 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 3844–3849. IEEE.
Liu, T. and Mildner, A. (2020). Training deep neural net-
works on synthetic data. LU-CS-EX.
Mekki-Mokhtar, A., Blanquart, J.-P., Guiochet, J., Powell,
D., and Roy, M. (2012). Safety trigger conditions
for critical autonomous systems. In 2012 IEEE 18th
Pacific Rim International Symposium on Dependable
Computing, pages 61–69. IEEE.
Metzen, J. H., Hutmacher, R., Hua, N. G., Boreiko, V., and
Zhang, D. (2023). Identification of systematic errors of
image classifiers on rare subgroups. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 5064–5073.
Richter, S. R., Hayder, Z., and Koltun, V. (2017). Playing for
benchmarks. In Proceedings of the IEEE international
conference on computer vision, pages 2213–2222.
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez,
A. M. (2016). The synthia dataset: A large collection of
synthetic images for semantic segmentation of urban
scenes. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3234–
3243.
Schneider, D. G. and Stemmer, M. R. (2023). Synthetic
data generation on dynamic industrial environment for
object detection, tracking, and segmentation cnns. In
Doctoral Conference on Computing, Electrical and
Industrial Systems, pages 135–146. Springer.
Settles, B. (2009). Active learning literature survey. Techni-
cal Report 1648, University of Wisconsin–Madison.
Song, Z., He, Z., Li, X., Ma, Q., Ming, R., Mao, Z., Pei, H.,
Peng, L., Hu, J., Yao, D., et al. (2023). Synthetic
datasets for autonomous driving: A survey. IEEE
Transactions on Intelligent Vehicles.
Soviany, P., Ionescu, R. T., Rota, P., and Sebe, N. (2022).
Curriculum learning: A survey. International Journal
of Computer Vision, 130(6):1526–1565.
Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani,
V., Anil, C., To, T., Cameracci, E., Boochoon, S., and
Birchfield, S. (2018). Training deep networks with
synthetic data: Bridging the reality gap by domain
randomization. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops,
pages 969–977.
Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., and Wang,
F.-Y. (2017). Generative adversarial networks: intro-
duction and outlook. IEEE/CAA Journal of Automatica
Sinica, 4(4):588–598.
Wang, X., Chen, Y., and Zhu, W. (2021). A survey on
curriculum learning. IEEE transactions on pattern
analysis and machine intelligence, 44(9):4555–4576.
Yue, X., Zhang, Y., Zhao, S., Sangiovanni-Vincentelli, A.,
Keutzer, K., and Gong, B. (2019). Domain random-
ization and pyramid consistency: Simulation-to-real
generalization without accessing target domain data. In
Proceedings of the IEEE/CVF international conference
on computer vision, pages 2100–2110.
Zhang, L., Rao, A., and Agrawala, M. (2023). Adding con-
ditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3836–3847.
Zhang, R., Albrecht, A., Kausch, J., Putzer, H. J., Geipel, T.,
and Halady, P. (2021). Dde process: A requirements en-
gineering approach for machine learning in automated
driving. In 2021 IEEE 29th International Requirements
Engineering Conference (RE), pages 269–279. IEEE.
Zhu, X., Bilal, T., M
˚
artensson, P., Hanson, L., Bj
¨
orkman, M.,
and Maki, A. (2023). Towards sim-to-real industrial
parts classification with synthetic dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4454–4463.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
392