
variants of Marching Cubes. Instead, it generates the
triangulation in a procedural algorithm based on a lo-
cal halfedge data structure. The correct topology is
determined by the contours on the cell faces and the
configuration of critical points inside the cell. Com-
pared to previous methods, our approach generates
topologically correct triangulations for cases where
the intersection of the trilinear interpolant and a cell
face is not hyperbolic but degenerates into two cross-
ing lines. Our method creates a more detailed mesh
by making use of critical points of the surface. We
showed that an isosurface based on trilinear interpo-
lation can be non-manifold both inside of a cell and
on the boundary between cells, so a topologically cor-
rect triangulation should include these non-manifold
features.
ACKNOWLEDGEMENTS
This work was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –
502500606.
REFERENCES
Carr, H. and Max, N. (2010). Subdivision Analysis of the
Trilinear Interpolant. IEEE Transactions on Visualiza-
tion and Computer Graphics, 16(4):533–547.
Chen, Z., Tagliasacchi, A., Funkhouser, T., and Zhang, H.
(2022). Neural dual contouring. ACM Trans. Graph.,
41(4):104:1–104:13.
Chen, Z. and Zhang, H. (2021). Neural marching cubes.
ACM Trans. Graph., 40(6):251:1–251:15.
Chernyaev, E. (1996). Marching Cubes 33: Construction of
Topologically Correct Isosurfaces. No. CERN-CN-95-
17.
Custodio, L., Etiene, T., Pesco, S., and Silva, C.
(2013). Practical considerations on Marching Cubes
33 topological correctness. Computers & Graphics,
37(7):840–850.
Custodio, L., Pesco, S., and Silva, C. (2019). An extended
triangulation to the Marching Cubes 33 algorithm.
Journal of the Brazilian Computer Society, 25(1):6.
Etiene, T., Nonato, L. G., Scheidegger, C., Tienry, J., Pe-
ters, T. J., Pascucci, V., Kirby, R. M., and Silva, C. T.
(2012). Topology Verification for Isosurface Extrac-
tion. IEEE Transactions on Visualization and Com-
puter Graphics, 18(6):952–965.
Grosso, R. (2016). Construction of Topologically Correct
and Manifold Isosurfaces. Computer Graphics Forum,
35(5):187–196.
Grosso, R. (2017). An asymptotic decider for robust
and topologically correct triangulation of isosurfaces:
topologically correct isosurfaces. Proceedings of the
Computer Graphics International Conference, pages
1–5.
Hege, H.-C., Stalling, D., Seebass, M., and Z
¨
ockler, M.
(1997). A generalized marching cubes algorithm
based on non-binary classifications. SC-97-05.
Konkle, S. F., Moran, P. J., Hamann, B., and Joy, K. I.
(2003). Fast methods for computing isosurface topol-
ogy with betti numbers. In Data Visualization: The
State of the Art, pages 363–375.
Lewiner, T., Lopes, H., Vieira, A., and Tavares, G. (2012).
Efficient Implementation of Marching Cubes’ Cases
with Topological Guarantees. Journal of Graphics
Tools, 8.
Lopes, A. and Brodlie, K. (2003). Improving the robust-
ness and accuracy of the marching cubes algorithm
for isosurfacing. IEEE Transactions on Visualization
and Computer Graphics, 9(1):16–29.
Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:
A high resolution 3D surface construction algorithm.
In Proceedings of the 14th annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’87, pages 163–169.
Natarajan, B. K. (1994). On generating topologically con-
sistent isosurfaces from uniform samples. The Visual
Computer, 11(1):52–62.
Newman, T. S. and Yi, H. (2006). A survey of the marching
cubes algorithm. Computers & Graphics, 30(5):854–
879.
Nielson, G. (2003). On Marching Cubes. IEEE Trans-
actions on Visualization and Computer Graphics,
9:283–297.
Nielson, G. and Hamann, B. (1991). The asymptotic de-
cider: resolving the ambiguity in marching cubes. In
Proceeding Visualization ’91, pages 83–91.
Nielson, G., Huang, A., and Sylvester, S. (2002). Approxi-
mating normals for marching cubes applied to locally
supported isosurfaces. In IEEE Visualization, 2002.
VIS 2002., pages 459–466.
Raman, S. and Wenger, R. (2008). Quality Isosur-
face Mesh Generation Using an Extended Marching
Cubes Lookup Table. Computer Graphics Forum,
27(3):791–798.
Renbo, X., Weijun, L., and Yuechao, W. (2005). A Robust
and Topological Correct Marching Cube Algorithm
Without Look-Up Table. In The Fifth International
Conference on Computer and Information Technology
(CIT’05), pages 565–569.
Scheidegger, C., Etiene, T., Nonato, L. G., and Silva, C. T.
(2010). Edge Flows: Stratified Morse Theory for Sim-
ple, Correct Isosurface Extraction. SCI Institute, Uni-
versity of Utah, SCI Technical Report UUSCI-2010-
002.
Stahl, J. (2025). MCPro [Software]. Github.
https://github.com/JulyCode/MCPro.
Theisel, H. (2002). Exact Isosurfaces for Marching Cubes.
Computer Graphics Forum, 21(1):19–32.
Treece, G. M., Prager, R. W., and Gee, A. H. (1999). Regu-
larised marching tetrahedra: improved iso-surface ex-
traction. Computers & Graphics, 23(4):583–598.
van der Walt, S., Sch
¨
onberger, J. L., Nunez-Iglesias, J.,
Boulogne, F., Warner, J. D., Yager, N., Gouillart,
E., Yu, T., and the scikit-image contributors (2014).
scikit-image: image processing in Python. PeerJ,
2:e453.
GRAPP 2025 - 20th International Conference on Computer Graphics Theory and Applications
338