
Computer Vision, Marseille, France, October 12-
18, 2008, Proceedings, Part I 10, pages 766–779.
Springer.
Cao, C., Weng, Y., Zhou, S., Tong, Y., and Zhou, K. (2013).
Facewarehouse: A 3d facial expression database for
visual computing. IEEE Transactions on Visualization
and Computer Graphics, 20(3):413–425.
Chai, Z., Zhang, T., He, T., Tan, X., Baltru
ˇ
saitis, T., Wu, H.,
Li, R., Zhao, S., Yuan, C., and Bian, J. (2023). Hiface:
High-fidelity 3d face reconstruction by learning static
and dynamic details.
Dawson-Haggerty et al. trimesh.
Feng, Y., Wu, F., Shao, X., Wang, Y., and Zhou, X. (2021).
Deca: Deep face model with 3d morphable models.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
7668–7677.
Furukawa, Y. and Ponce, J. (2009). Accurate, dense, and ro-
bust multiview stereopsis. IEEE transactions on pat-
tern analysis and machine intelligence, 32(8):1362–
1376.
Giebenhain, S., Kirschstein, T., Georgopoulos, M., R
¨
unz,
M., Agapito, L., and Nießner, M. (2023). Learning
neural parametric head models. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR).
Grassal, P.-W., Prinzler, M., Leistner, T., Rother, C.,
Nießner, M., and Thies, J. (2022). Neural head avatars
from monocular rgb videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 18653–18664.
Gu, J., Gao, Q., Zhai, S., Chen, B., Liu, L., and Susskind, J.
(2023). Control3diff: Learning controllable 3d diffu-
sion models from single-view images.
Kirschstein, T., Giebenhain, S., and Nießner, M. (2023).
Diffusionavatars: Deferred diffusion for high-fidelity
3d head avatars. arXiv preprint arXiv:2311.18635.
Lei, B., Ren, J., Feng, M., Cui, M., and Xie, X. (2023). A
hierarchical representation network for accurate and
detailed face reconstruction from in-the-wild images.
Li, T., Bolkart, T., Black, M. J., Li, H., and Romero, J.
(2017). Learning a model of facial shape and expres-
sion from 4d scans. ACM Trans. Graph., 36(6):194–1.
Li, Y., Zhang, Y., Chen, W., Zheng, Y., Li, H., and Yu, J.
(2023). Mono-nphm: Monocular neural parametric
head model for high-fidelity 3d head reconstruction.
arXiv preprint arXiv:2312.06740.
Matl, M. et al. (2019). Pyrender. GitHub Repository.
M
¨
uller, N., Siddiqui, Y., Porzi, L., Bul
`
o, S. R.,
Kontschieder, P., and Nießner, M. (2023). Diffrf:
Rendering-guided 3d radiance field diffusion.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alch
´
e-Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.
Ploumpis, S., Wang, H., Pears, N., Smith, W. A., and
Zafeiriou, S. (2019). Combining 3d morphable mod-
els: A large scale face-and-head model. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10934–10943.
Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. (2022).
Dreamfusion: Text-to-3d using 2d diffusion.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation.
Sch
¨
onberger, J. L., Zheng, E., Frahm, J.-M., and Pollefeys,
M. (2016). Pixelwise view selection for unstructured
multi-view stereo. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part III 14,
pages 501–518. Springer.
Tran, L., Liu, F., and Liu, X. (2019). Towards high-fidelity
nonlinear 3d face morphable model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1126–1135.
Tran, L. and Liu, X. (2018). Nonlinear 3d face morphable
model. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7346–
7355.
Wang, Y., Hu, Y., Guo, Y., Zhang, Z., and Yu, J. (2024).
Morphable diffusion: 3d face reconstruction from a
single image. arXiv preprint arXiv:2401.04728.
Zhao, Y., Liu, Z., Yang, M., and Chen, L. (2022). Rodin:
A realistic 3d face reconstruction method using diffu-
sion models. International Journal of Computer Vi-
sion, 130(3):707–724.
Zhao, Y., Liu, Z., Yang, M., and Chen, L. (2023). Rodinhd:
High-resolution 3d face reconstruction using diffusion
models. arXiv preprint arXiv:2305.05555.
Zheng, Y., Yang, H., Zhang, T., Bao, J., Chen, D., Huang,
Y., Yuan, L., Chen, D., Zeng, M., and Wen, F. (2021).
General facial representation learning in a visual-
linguistic manner. arXiv preprint arXiv:2112.03109.
Zheng, Y., Yang, H., Zhang, T., Bao, J., Chen, D., Huang,
Y., Yuan, L., Chen, D., Zeng, M., and Wen, F. (2022).
General facial representation learning in a visual-
linguistic manner. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 18697–18709.
Zheng Ding, Cecilia Zhang, Z. X. L. J. Z. T. and Zhang,
X. (2023). Diffusionrig: Learning personalized priors
for facial appearance editing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition.
Zhu, H., Yang, H., Guo, L., Zhang, Y., Wang, Y., Huang,
M., Wu, M., Shen, Q., Yang, R., and Cao, X.
(2023a). Facescape: 3d facial dataset and benchmark
for single-view 3d face reconstruction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI).
Zhu, Y., Ye, Y., Zhang, S., Zhao, X., and Yu, J. J. Q.
(2023b). Difftraj: Generating gps trajectory with dif-
fusion probabilistic model.
Zielonka, W., Bolkart, T., and Thies, J. (2022). Towards
metrical reconstruction of human faces.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
400