
Ganascia, J.-G. (2007). Modelling ethical rules of lying
with Answer Set Programming. Ethics and Informa-
tion Technology, 9(1):39–47.
Ghaderi, H., Levesque, H., and Lesp
´
erance, Y. (2007). To-
wards a logical theory of coordination and joint abil-
ity. In Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent sys-
tems, AAMAS ’07, pages 1–3, New York, NY, USA.
Association for Computing Machinery.
Ghorbani, A., Dignum, V., Bots, P., and Dijkema, G. (2013).
Maia: a framework for developing agent-based social
simulations. JASSS-The Journal of Artificial Societies
and Social Simulation, 16(2):9.
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter,
M. A., and Kagal, L. (2018). Explaining explanations:
An overview of interpretability of machine learning.
In 2018 IEEE 5th International Conference on Data
Science and Advanced Analytics (DSAA), pages 80–
89.
Goodall, N. J. (2014). Machine ethics and automated vehi-
cles. Road vehicle automation, pages 93–102.
Guzak, J. R. (2014). Affect in ethical decision making:
Mood matters. Ethics & Behavior, 25(5):386–399.
Hadzic, O. and Pap, E. (2013). Fixed point theory in prob-
abilistic metric spaces, volume 536. Springer Science
& Business Media.
Hagendorff, T. (2020). The ethics of ai ethics: An evalu-
ation of guidelines. Minds and machines, 30(1):99–
120.
Islam, R., Keya, K. N., Pan, S., Sarwate, A. D., and Foulds,
J. R. (2023). Differential Fairness: An Intersectional
Framework for Fair AI. Entropy, 25(4):660. Num-
ber: 4 Publisher: Multidisciplinary Digital Publishing
Institute.
Kavathatzopoulos, I., Laaksoharju, M., and Rick, C. (2007).
Simulation and support in ethical decision making.
Globalisation: Bridging the global nature of Infor-
mation and Communication Technology and the local
nature of human beings, pages 278–287.
Keeney, R. L. (1993). Decisions with multiple objectives:
Preferences and value tradeoffs. Cambridge univer-
sity press.
Kleiman-Weiner, M., Saxe, R., and Tenenbaum, J. B.
(2017). Learning a commonsense moral theory. Cog-
nition, 167:107–123.
Koller, D. (2009). Probabilistic Graphical Models: Princi-
ples and Techniques. The MIT Press.
Krarup, B., Lindner, F., Krivic, S., and Long, D. (2022).
Understanding a robot’s guiding ethical principles via
automatically generated explanations. In 2022 IEEE
18th International Conference on Automation Science
and Engineering (CASE), pages 627–632, Mexico
City. IEEE Xplore.
Levesque, H. J. (1986). Knowledge representation and
reasoning. Annual Review of Computer Science,
1(1):255–287.
Lockhart, T. (2000). Moral uncertainty and its conse-
quences. Oxford University Press, New York.
L
´
opez-Paredes, A., Edmonds, B., and Klugl, F. (2012).
Agent based simulation of complex social systems.
Mercuur, R., Dignum, V., and Jonker, C. (2019). The value
of values and norms in social simulation. Journal of
Artificial Societies and Social Simulation, 22(1):1–9.
Moor, J. H. (1995). Is ethics computable? Metaphilosophy,
26(1/2):1–21.
Moor, J. H. (2006). The nature, importance, and diffi-
culty of machine ethics. IEEE Intelligent Systems,
21(4):18–21.
Ostrom, E. (2000). Collective action and the evolution
of social norms. Journal of economic perspectives,
14(3):137–158.
Pearl, J. (2014). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Elsevier.
Rahman, M. M., Pan, S., and Foulds, J. R. (2024). Towards
A Unifying Human-Centered AI Fairness Framework.
In Proceedings of the 2024 International Conference
on Information Technology for Social Good, GoodIT
’24, pages 88–92, New York, NY, USA. Association
for Computing Machinery.
Ross, D. (2002). The Right and the Good. Oxford Univer-
sity Press.
Rudin, W. et al. (1964). Principles of mathematical analy-
sis, volume 3. McGraw-hill New York.
Russell, S. J. and Norvig, P. (2016). Artificial intelligence:
a modern approach. Pearson.
Ruvinsky, A. I. (2007). Computational ethics. In Encyclo-
pedia of Information Ethics and Security, pages 76–
82. IGI Global.
Sanner, S. and Kersting, K. (2010). Symbolic Dynamic Pro-
gramming for First-order POMDPs. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 24, pages 1140–1146. Number: 1.
Segun, S. T. (2020). From machine ethics to computational
ethics. AI & SOCIETY.
Strehl, A. and Ghosh, J. (2002). Cluster ensembles A
knowledge reuse framework for combining partition-
ings. In Dechter, R., Kearns, M. J., and Sutton, R. S.,
editors, Proceedings of the Eighteenth National Con-
ference on Artificial Intelligence and Fourteenth Con-
ference on Innovative Applications of Artificial Intel-
ligence, July 28 - August 1, 2002, Edmonton, Alberta,
Canada, pages 93–99. AAAI Press / The MIT Press.
Von Neumann, J. and Morgenstern, O. (2007). Theory of
games and economic behavior: 60th anniversary com-
memorative edition. In Theory of games and economic
behavior. Princeton university press.
Winfield, A. F., Booth, S., Dennis, L. A., Egawa, T., Hastie,
H., Jacobs, N., Muttram, R. I., Olszewska, J. I., Ra-
jabiyazdi, F., Theodorou, A., et al. (2021). Ieee p7001:
A proposed standard on transparency. Frontiers in
Robotics and AI, 8:665729.
Zhang, J., Shu, Y., and Yu, H. (2023). Fairness in De-
sign: A Framework for Facilitating Ethical Artificial
Intelligence Designs. International Journal of Crowd
Science, 7(1):32–39. Conference Name: International
Journal of Crowd Science.
Towards Developing Ethical Reasoners: Integrating Probabilistic Reasoning and Decision-Making for Complex AI Systems
599