
sis. JNCI: Journal of the National Cancer Institute,
112(11):1162–1169.
Bouteldja, N., Klinkhammer, B. M., B
¨
ulow, R. D., Droste,
P., Otten, S. W., Von Stillfried, S. F., Moellmann,
J., Sheehan, S. M., Korstanje, R., Menzel, S., et al.
(2021). Deep learning–based segmentation and quan-
tification in experimental kidney histopathology. Jour-
nal of the American Society of Nephrology, 32(1):52–
68.
Cao, L., Li, J., and Chen, S. (2023). Multi-target segmenta-
tion of pancreas and pancreatic tumor based on fusion
of attention mechanism. Biomedical Signal Process-
ing and Control, 79:104170.
Fang, C., Li, G., Pan, C., Li, Y., and Yu, Y. (2019). Glob-
ally guided progressive fusion network for 3d pan-
creas segmentation. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2019: 22nd
International Conference, Shenzhen, China, October
13–17, 2019, Proceedings, Part II 22, pages 210–218.
Springer.
Fang, K., He, B., Liu, L., Hu, H., Fang, C., Huang, X., and
Jia, F. (2023). Umrformer-net: a three-dimensional
u-shaped pancreas segmentation method based on a
double-layer bridged transformer network. Quantita-
tive Imaging in Medicine and Surgery, 13(3):1619.
Ghorpade, H., Jagtap, J., Patil, S., Kotecha, K., Abraham,
A., Horvat, N., and Chakraborty, J. (2023). Automatic
segmentation of pancreas and pancreatic tumor: A re-
view of a decade of research. IEEE Access.
Ghorpade, H., Kolhar, S., Jagtap, J., and Chakraborty, J. An
optimized two stage u-net approach for segmentation
of pancreas and pancreatic tumor. Available at SSRN
4876121.
He, J., Luo, Z., Lian, S., Su, S., and Li, S. (2024). To-
wards accurate abdominal tumor segmentation: A 2d
model with position-aware and key slice feature shar-
ing. Computers in Biology and Medicine, 179:108743.
Huang, B., Huang, H., Zhang, S., Zhang, D., Shi, Q., Liu,
J., and Guo, J. (2022). Artificial intelligence in pan-
creatic cancer. Theranostics, 12(16):6931.
Kamisawa, T., Wood, L. D., Itoi, T., and Takaori, K. (2016).
Pancreatic cancer. The Lancet, 388(10039):73–85.
Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., and Heng,
P.-A. (2018). H-denseunet: hybrid densely con-
nected unet for liver and tumor segmentation from
ct volumes. IEEE transactions on medical imaging,
37(12):2663–2674.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A.,
Ciompi, F., Ghafoorian, M., Van Der Laak, J. A.,
Van Ginneken, B., and S
´
anchez, C. I. (2017). A survey
on deep learning in medical image analysis. Medical
image analysis, 42:60–88.
Liu, Y., Feng, M., Chen, H., Yang, G., Qiu, J., Zhao, F., Cao,
Z., Luo, W., Xiao, J., You, L., et al. (2020). Mechanis-
tic target of rapamycin in the tumor microenvironment
and its potential as a therapeutic target for pancreatic
cancer. Cancer letters, 485:1–13.
Luchini, C., Capelli, P., and Scarpa, A. (2016). Pancre-
atic ductal adenocarcinoma and its variants. Surgical
pathology clinics, 9(4):547–560.
Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). V-
net: Fully convolutional neural networks for volumet-
ric medical image segmentation. In 2016 fourth inter-
national conference on 3D vision (3DV), pages 565–
571. Ieee.
Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich,
M., Misawa, K., Mori, K., McDonagh, S., Hammerla,
N. Y., Kainz, B., et al. (2018). Attention u-net: Learn-
ing where to look for the pancreas. arXiv preprint
arXiv:1804.03999.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th
international conference, Munich, Germany, October
5-9, 2015, proceedings, part III 18, pages 234–241.
Springer.
Simpson, A. L., Antonelli, M., Bakas, S., Bilello, M.,
Farahani, K., van Ginneken, B., Kopp-Schneider, A.,
Landman, B. A., Litjens, G., Menze, B., Ronneberger,
O., Summers, R. M., Bilic, P., Christ, P. F., Do,
R. K. G., Gollub, M., Golia-Pernicka, J., Heckers,
S. H., Jarnagin, W. R., McHugo, M. K., Napel, S.,
Vorontsov, E., Maier-Hein, L., and Cardoso, M. J.
(2019). A large annotated medical image dataset for
the development and evaluation of segmentation algo-
rithms.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjo-
mataram, I., Jemal, A., and Bray, F. (2021). Global
cancer statistics 2020: Globocan estimates of in-
cidence and mortality worldwide for 36 cancers in
185 countries. CA: a cancer journal for clinicians,
71(3):209–249.
Wang, Y., Zhang, J., Cui, H., Zhang, Y., and Xia, Y.
(2021). View adaptive learning for pancreas segmen-
tation. Biomedical Signal Processing and Control,
66:102347.
Xia, F., Peng, Y., Wang, J., and Chen, X. (2024). A 2.5
d multi-path fusion network framework with focus-
ing on z-axis 3d joint for medical image segmen-
tation. Biomedical Signal Processing and Control,
91:106049.
Yan, Y. and Zhang, D. (2021). Multi-scale u-like network
with attention mechanism for automatic pancreas seg-
mentation. PLoS One, 16(5):e0252287.
Zhang, Y., Wu, J., Liu, Y., Chen, Y., Chen, W., Wu, E. X.,
Li, C., and Tang, X. (2021). A deep learning frame-
work for pancreas segmentation with multi-atlas reg-
istration and 3d level-set. Medical Image Analysis,
68:101884.
Zhao, B., Tan, Y., Bell, D. J., Marley, S. E., Guo, P., Mann,
H., Scott, M. L., Schwartz, L. H., and Ghiorghiu,
D. C. (2013). Exploring intra-and inter-reader vari-
ability in uni-dimensional, bi-dimensional, and volu-
metric measurements of solid tumors on ct scans re-
constructed at different slice intervals. European jour-
nal of radiology, 82(6):959–968.
Zhao, C., Xu, Y., He, Z., Tang, J., Zhang, Y., Han, J.,
Shi, Y., and Zhou, W. (2021). Lung segmentation
and automatic detection of covid-19 using radiomic
BIOINFORMATICS 2025 - 16th International Conference on Bioinformatics Models, Methods and Algorithms
674