
ware for neural circuit reconstruction. PLOS ONE,
7(6):e38011.
Chalfoun, J., Majurski, M., Blattner, T., Bhadriraju, K.,
Keyrouz, W., Bajcsy, P., and Brady, M. (2017). Mist:
Accurate and scalable microscopy image stitching
tool with stage modeling and error minimization. Sci-
entific Reports, 7:4988.
Chen, H., Luo, Z., Zhou, L., Tian, Y., Zhen, M., Fang, T.,
McKinnon, D., Tsin, Y., and Quan, L. (2022). Aspan-
former: Detector-free image matching with adaptive
span transformer. In Avidan, S., Brostow, G., Ciss
´
e,
M., Giovanni, M., and Hassner, T., editors, Computer
Vision – ECCV 2022, Lecture Notes in Computer Sci-
ence, pages 20–36, Cham, Switzerland. Springer.
Conrad, R. and Narayan, K. (2021). Cem500k, a large-scale
heterogeneous unlabeled cellular electron microscopy
image dataset for deep learning. eLife, 10:e65894.
DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018).
Superpoint: Self-supervised interest point detection
and description. In Conference on Computer Vision
and Pattern Recognition Workshops, CVPRW, pages
337–349, Salt Lake City, UT, USA. IEEE.
Dice, L. R. (1945). A threshold selection method from gray-
level histograms. Ecology, 26(3):297–302.
Ellisman, M., Ranganathan, R., Deerinck, T. J., Young,
S. J., Hessler, D., and Terry, R. D. (1987). The cell im-
age library: Homo sapiens, neocortex pyramidal cell.
Dataset. CCDB:6355.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Hoshijima, M., Hayashi, T., Thor, A., Terada, M., Martone,
M., and Ellisman, M. (2004). The cell image library:
Mus musculus, t-tubules, sarcoplasmic reticulum, my-
ocyte. Dataset. CCDB:3603.
Huang, D., Chen, Y., Liu, Y., Liu, J., Xu, S., Wu, W., Ding,
Y., Tang, F., and Wang, C. (2023). Adaptive assign-
ment for geometry aware local feature matching. In
Conference on Computer Vision and Pattern Recog-
nition, CVPR, pages 5425–5434, Vancouver, Canada.
IEEE.
Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. (2017). Flownet 2.0: Evolution of optical
flow estimation with deep networks. In Conference
on Computer Vision and Pattern Recognition, CVPR,
pages 1647–1655, Honolulu, HI, USA. IEEE.
Jolliffe, I. T. (2002). Principal Component Analysis.
Springer New York, New York, NY, USA, 2 edition.
Kuglin, C. and Hines, D. A. (1975). The phase correla-
tion image alignment method. In Proceedings of the
1975 IEEE International Conference on Cybernetics
and Society, pages 163–165, New York, NY, USA.
IEEE.
Lewis, J. P. (1995). Fast template matching. In Vision Inter-
face, pages 120–123, Quebec City, Canada. Canadian
Image Processing and Pattern Recognition Society.
Lewis, R. M., Baskaran, H., Green, J., Tashev, S., Pa-
leologou, E., Lofthouse, E. M., Cleal, J. K., Page,
A., Chatelet, D. S., Goggin, P., and Sengers, B. G.
(2022). EMPIAR: Sbf sem of human term placental
villi. Dataset. EMPIAR-10967.
Li, K. and Ding, G. (2018). A novel automatic image
stitching algorithm for ceramic microscopic images.
In International Conference on Audio, Language and
Image Processing, ICALIP, pages 17–21, Shanghai,
China. IEEE.
Liang, W. G., Wijaya, J., Wei, H., Noble, A. J., Mancl,
J. M., Mo, S., Lee, D., King, J. L., Pan, M., Liu, C.,
Koehler, C. M., Zhao, M., Potter, C. S., Carragher, B.,
Li, S., and Tang, W. J. (2022). EMPIAR: Structural
basis for the mechanisms of human presequence pro-
tease conformational switch and substrate recognition.
Dataset. EMPIAR-10937.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Mahalingam, G., Torres, R., Kapner, D., Trautman, E. T.,
Fliss, T., Seshamani, S., Perlman, E., Young, R., Kinn,
S., Buchanan, J., Takeno, M. M., Yin, W., Bumbarger,
D. J., Gwinn, R. P., Nyhus, J., Lein, E., Smith, S. J.,
Reid, R. C., Khairy, K. A., Saalfeld, S., Collman, F.,
and da Costa, N. M. (2022). A scalable and modu-
lar automated pipeline for stitching of large electron
microscopy datasets. eLife, 11:e76534.
Marquardt, D. W. (1963). An algorithm for least-squares
estimation of nonlinear parameters. Journal of
the Society for Industrial and Applied Mathematics,
11(2):431–441.
Mohammadi, F. S., Mohammadi, S. E., Adi, P. M.,
Mirkarimi, S. M. A., and Shabani, H. (2024a). A
comparative analysis of pairwise image stitching tech-
niques for microscopy images. Scientific Reports,
14:9215.
Mohammadi, F. S., Shabani, H., and Zarei, M. (2024b). Fast
and robust feature-based stitching algorithm for mi-
croscopic images. Scientific Reports, 14:13304.
Muhlich, J. L., Chen, Y.-A., Yapp, C., Russell, D., San-
tagata, S., and Sorger, P. K. (2022). Stitching and
registering highly multiplexed whole-slide images of
tissues and tumors using ashlar. Bioinformatics,
38:4613–4621.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R.,
Geselowitz, A., Greer, T., ter Haar Romeny, B., Zim-
merman, J. B., and Zuiderveld, K. (1987). Adaptive
histogram equalization and its variations. Computer
Vision, Graphics, and Image Processing, 39(3):355–
368.
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf. In
International Conference on Computer Vision, ICCV,
pages 2564–2571, Barcelona, Spain. IEEE.
Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. (2020). Superglue: Learning feature matching with
graph neural networks. In Conference on Computer
Vision and Pattern Recognition, CVPR, pages 4937–
4946, Seattle, WA, USA. IEEE.
BIOIMAGING 2025 - 12th International Conference on Bioimaging
264