Archives of Computational Methods in Engineering,
30(6), 3657-3671.
Baltazar, S. M. C. (2015). A Study on the Deployment of GA
in a Grid Computing Framework. Universidade do
Algarve (Portugal),
Chnini, S., Smairi, N., & Nasri, N. (2024). Classification
survey of many-objective optimization methods. Paper
presented at the 2024 10th International Conference on
Control, Decision and Information Technologies
(CoDIT).
Jithendranath, J., & Das, D. (2023). Multi-objective optimal
power flow in islanded microgrids with solar PV
generation by NLTV-MOPSO. IETE Journal of
Research, 69(4), 2130-2143.
Khediri, S. E., Nasri, N., Khan, R. U., & Kachouri, A.
(2021). An improved energy efficient clustering
protocol for increasing the life time of wireless sensor
networks. Wireless Personal Communications, 116,
539-558.
Li, H., Wang, Z., Lan, C., Wu, P., & Zeng, N. (2023). A
novel dynamic multiobjective optimization algorithm
with non-inductive transfer learning based on multi-
strategy adaptive selection. IEEE Transactions on
Neural Networks and Learning Systems.
Li, J., & Gonsalves, T. (2022). Parallel hybrid island
metaheuristic algorithm. IEEE Access, 10, 42268-
42286.
Liu, Y., Shen, H., Yang, W., & Yang, J. (2013).
Optimization of agricultural BMPs using a parallel
computing based multi-objective optimization
algorithm. Environmental Resources Research, 1(1),
39-50.
Mansouri, M., Safavi, H. R., & Rezaei, F. (2022). An
improved MOPSO algorithm for multi-objective
optimization of reservoir operation under climate
change. Environmental Monitoring and Assessment,
194(4), 261.
Maraveas, C., Asteris, P. G., Arvanitis, K. G., Bartzanas,
T., & Loukatos, D. (2023). Application of bio and
nature-inspired algorithms in agricultural engineering.
Archives of Computational Methods in Engineering,
30(3), 1979-2012.
Muthukumaran, S., Geetha, P., & Ramaraj, E. (2023).
Multi-Objective Optimization with Artificial Neural
Network Based Robust Paddy Yield Prediction Model.
Intelligent Automation & Soft Computing, 35(1).
Nouiri, I. Outils dโaide ร la dรฉcision pour la gestion
optimale des ressources en eau.
Nouiri, I., Yitayew, M., Maรmann, J., & Tarhouni, J.
(2015). Multi-objective optimization tool for integrated
groundwater management. Water Resources
Management, 29, 5353-5375.
Rakshit, P., Chowdhury, A., Konar, A., & Nagar, A. K.
(2020). Migration in multi-population differential
evolution for many objective optimization. Paper
presented at the 2020 IEEE Congress on Evolutionary
Computation (CEC).
Reddy, M. J., & Kumar, D. N. (2009). Performance
evaluation of elitist-mutated multi-objective particle
swarm optimization for integrated water resources
management. Journal of Hydroinformatics, 11(1), 79-88.
Selvam, K., Vinod Kumar, D., & Siripuram, R. (2017).
Distributed generation planning using peer enhanced
multi-objective teachingโlearning based optimization
in distribution networks. Journal of The Institution of
Engineers (India): Series B, 98
, 203-211.
Sivagurunathan, G., Kotteeswaran, R., Suresh, M., &
Kirthini Godweena, A. (2021). Design of centralized
controller for multivariable process using MOPSO
algorithm. Indian Journal of Science and Technology,
14(26), 2223-2237.
Wu, G., Mallipeddi, R., & Suganthan, P. N. (2019).
Ensemble strategies for population-based optimization
algorithmsโA survey. Swarm and Evolutionary
Computation, 44, 695-711.
Yang, N., Tang, Z., Cai, X., Chen, L., & Hu, Q. (2022).
Cooperative multi-population Harris Hawks
optimization for many-objective optimization. Complex
& Intelligent Systems, 8(4), 3299-3332.
Yazdani, D., Cheng, R., He, C., & Branke, J. (2020).
Adaptive control of subpopulations in evolutionary
dynamic optimization. IEEE transactions on
cybernetics, 52(7), 6476-6489.
Yazdani, D., Omidvar, M. N., Branke, J., Nguyen, T. T., &
Yao, X. (2019). Scaling up dynamic optimization
problems: A divide-and-conquer approach. IEEE
transactions on evolutionary computation, 24(1), 1-15.
Yazdani, D., Yazdani, D., Yazdani, D., Omidvar, M. N.,
Gandomi, A. H., & Yao, X. (2023). A species-based
particle swarm optimization with adaptive population
size and deactivation of species for dynamic
optimization problems. ACM Transactions on
Evolutionary Learning and Optimization, 3(4), 1-25.
Zarei, N., Azari, A., & Heidari, M. M. (2022). Improvement
of the performance of NSGA-II and MOPSO
algorithms in multi-objective optimization of urban
water distribution networks based on modification of
decision space. Applied Water Science, 12(6), 133.