
2018/22214-6). This study was financed in part by
the Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior - Brasil (CAPES).
REFERENCES
Abdelmounaime, S. and Dong-Chen, H. (2013). New
brodatz-based image databases for grayscale color and
multiband texture analysis. International Scholarly
Research Notices, 2013.
Backes, A. R., Casanova, D., and Bruno, O. M. (2009).
Plant leaf identification based on volumetric fractal
dimension. International Journal of Pattern Recog-
nition and Artificial Intelligence, 23(06):1145–1160.
Backes, A. R., Casanova, D., and Bruno, O. M. (2012).
Color texture analysis based on fractal descriptors.
Pattern Recognition, 45(5):1984–1992.
Backes, A. R., Casanova, D., and Bruno, O. M.
(2013a). Texture analysis and classification: A com-
plex network-based approach. Information Sciences,
219:168–180.
Backes, A. R., Casanova, D., and Bruno, O. M.
(2013b). Texture analysis and classification: A com-
plex network-based approach. Information Sciences,
219:168–180.
Borzooei, S., Scabini, L., Miranda, G., Daneshgar, S., De-
blieck, L., Bruno, O., De Langhe, P., De Baets, B.,
Nopens, I., and Torfs, E. (2024). Evaluation of acti-
vated sludge settling characteristics from microscopy
images with deep convolutional neural networks and
transfer learning. Journal of Water Process Engineer-
ing, 64:105692.
Brodatz, P. (1966). Textures: A photographic album for
artisters and designerss. Dover Publications.
Calvetti, D., Morigi, S., Reichel, L., and Sgallari, F. (2000).
Tikhonov regularization and the L-curve for large dis-
crete ill-posed problems. Journal of Computational
and Applied Mathematics, 123(1):423 – 446.
Cover, T. M. (1965). Geometrical and statistical properties
of systems of linear inequalities with applications in
pattern recognition. IEEE Transactions on Electronic
Computers, EC-14(3):326–334.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Fares, R. T. and Ribas, L. C. (2024). A new approach
to learn spatio-spectral texture representation with
randomized networks: Application to brazilian plant
species identification. In International Conference on
Engineering Applications of Neural Networks, pages
435–449. Springer.
Fares, R. T., Vicentim, A. C. M., Scabini, L., Zielinski,
K. M., Jennane, R., Bruno, O. M., and Ribas, L. C.
(2024). Randomized encoding ensemble: A new ap-
proach for texture representation. In 2024 31st Inter-
national Conference on Systems, Signals and Image
Processing (IWSSIP), pages 1–8. IEEE.
Florindo, J. B. and Bruno, O. M. (2012). Fractal descriptors
based on Fourier spectrum applied to texture analysis.
Physica A: statistical Mechanics and its Applications,
391(20):4909–4922.
Guo, Y., Zhao, G., and Pietik
¨
ainen, M. (2011). Texture clas-
sification using a linear configuration model based de-
scriptor. In BMVC, pages 1–10. Citeseer.
Guo, Z., Zhang, L., and Zhang, D. (2010a). A completed
modeling of local binary pattern operator for texture
classification. IEEE Transactions on Image Process-
ing, 19(6):1657–1663.
Guo, Z., Zhang, L., and Zhang, D. (2010b). Rotation in-
variant texture classification using lbp variance (lbpv)
with global matching. Pattern recognition, 43(3):706–
719.
Haralick, R. M. (1979). Statistical and structural approaches
to texture. Proceedings of the IEEE, 67(5):786–804.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme
learning machine: Theory and applications. Neuro-
computing, 70(1):489–501.
Jagadeesh, A. V. and Gardner, J. L. (2022). Texture-
like representation of objects in human visual cor-
tex. Proceedings of the National Academy of Sciences,
119(17):e2115302119.
Kannala, J. and Rahtu, E. (2012). Bsif: Binarized statistical
image features. In Pattern Recognition (ICPR), 2012
21st International Conference on, pages 1363–1366.
IEEE.
Kruper, J., Richie-Halford, A., Benson, N. C., Caffarra,
S., Owen, J., Wu, Y., Egan, C., Lee, A. Y., Lee,
C. S., Yeatman, J. D., et al. (2024). Convolutional
neural network-based classification of glaucoma us-
ing optic radiation tissue properties. Communications
Medicine, 4(1):72.
Maani, R., Kalra, S., and Yang, Y.-H. (2013). Noise ro-
bust rotation invariant features for texture classifica-
tion. Pattern Recognition, 46(8):2103–2116.
Manjunath, B. S. and Ma, W.-Y. (1996). Texture features
for browsing and retrieval of image data. IEEE Trans-
actions on pattern analysis and machine intelligence,
18(8):837–842.
Moore, E. H. (1920). On the reciprocal of the general al-
gebraic matrix. Bulletin of American Mathematical
Society, pages 394–395.
Ojala, T., M
¨
aenp
¨
a
¨
a, T., Pietik
¨
ainen, M., Viertola, J.,
Kyll
¨
onen, J., and Huovinen, S. (2002a). Outex - new
framework for empirical evaluation of texture analy-
sis algorithms. Object recognition supported by user
interaction for service robots, 1:701–706 vol.1.
Ojala, T., Pietik
¨
ainen, M., and M
¨
aenp
¨
a
¨
a, T. (2002b). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
24(7):971–987.
Ojansivu, V. and Heikkil
¨
a, J. (2008). Blur insensitive tex-
ture classification using local phase quantization. In
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
208