
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Fares, R. T. and Ribas, L. C. (2024). Randomized
autoencoder-based representation for dynamic texture
recognition. In 2024 31st International Conference
on Systems, Signals and Image Processing (IWSSIP),
pages 1–7. IEEE.
Fares, R. T., Vicentim, A. C. M., Scabini, L., Zielinski,
K. M., Jennane, R., Bruno, O. M., and Ribas, L. C.
(2024). Randomized encoding ensemble: A new ap-
proach for texture representation. In 2024 31st Inter-
national Conference on Systems, Signals and Image
Processing (IWSSIP), pages 1–8. IEEE.
Guo, Y., Zhao, G., and Pietik
¨
ainen, M. (2011). Texture clas-
sification using a linear configuration model based de-
scriptor. In BMVC, pages 1–10. Citeseer.
Guo, Z., Zhang, L., and Zhang, D. (2010). A completed
modeling of local binary pattern operator for texture
classification. IEEE Transactions on Image Process-
ing, 19(6):1657–1663.
Haralick, R. M. (1979). Statistical and structural approaches
to texture. Proceedings of the IEEE, 67(5):786–804.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hu, S., Li, J., Fan, H., Lan, S., and Pan, Z. (2024).
Scale and pattern adaptive local binary pattern for tex-
ture classification. Expert Systems with Applications,
240:122403.
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. (2017). Densely connected convolutional net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708.
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme
learning machine: Theory and applications. Neuro-
computing, 70(1):489–501.
Kannala, J. and Rahtu, E. (2012). Bsif: Binarized statistical
image features. In Pattern Recognition (ICPR), 2012
21st International Conference on, pages 1363–1366.
IEEE.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. Advances In Neural Information Pro-
cessing Systems, pages 1–9.
Li, L., Yao, Z., Gao, S., Han, H., and Xia, Z. (2024). Face
anti-spoofing via jointly modeling local texture and
constructed depth. Engineering Applications of Ar-
tificial Intelligence, 133:108345.
Liu, G.-H. and Yang, J.-Y. (2023). Exploiting deep textures
for image retrieval. International Journal of Machine
Learning and Cybernetics, 14(2):483–494.
Marin
´
o, G. C., Petrini, A., Malchiodi, D., and Frasca, M.
(2023). Deep neural networks compression: A com-
parative survey and choice recommendations. Neuro-
computing, 520:152–170.
Moore, E. H. (1920). On the reciprocal of the general al-
gebraic matrix. Bulletin of American Mathematical
Society, pages 394–395.
Ojala, T., M
¨
aenp
¨
a
¨
a, T., Pietik
¨
ainen, M., Viertola, J.,
Kyll
¨
onen, J., and Huovinen, S. (2002a). Outex - new
framework for empirical evaluation of texture analy-
sis algorithms. Object recognition supported by user
interaction for service robots, 1:701–706 vol.1.
Ojala, T., Pietikainen, M., and Maenpaa, T. (2002b). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on pattern analysis and machine intelligence,
24(7):971–987.
Pao, Y.-H., Park, G.-H., and Sobajic, D. J. (1994). Learning
and generalization characteristics of the random vec-
tor functional-link net. Neurocomputing, 6(2):163–
180.
Pao, Y.-H. and Takefuji, Y. (1992). Functional-link net com-
puting: theory, system architecture, and functionali-
ties. Computer, 25(5):76–79.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural In-
formation Processing Systems 32, pages 8024–8035.
Curran Associates, Inc.
Penrose, R. (1955). A generalized inverse for matrices.
Mathematical Proceedings of the Cambridge Philo-
sophical Society, 51(3):406–413.
Rangaiah, P. K., Augustine, R., et al. (2025). Improving
burn diagnosis in medical image retrieval from graft-
ing burn samples using b-coefficients and the clahe al-
gorithm. Biomedical Signal Processing and Control,
99:106814.
Ribas, L. C., Scabini, L. F., Condori, R. H., and Bruno,
O. M. (2024a). Color-texture classification based
on spatio-spectral complex network representations.
Physica A: Statistical Mechanics and its Applications,
page 129518.
Ribas, L. C., Scabini, L. F., de Mesquita S
´
a Junior, J. J., and
Bruno, O. M. (2024b). Local complex features learned
by randomized neural networks for texture analysis.
Pattern Analysis and Applications, 27(1):1–12.
S
´
a Junior, J. J. d. M. and Backes, A. R. (2016). Elm based
signature for texture classification. Pattern Recogni-
tion, 51:395–401.
S
´
a Junior, J. J. d. M., Backes, A. R., and Bruno, O. M.
(2019). Randomized neural network based signature
for color texture classification. Multidimensional Sys-
tems and Signal Processing, 30(3):1171–1186.
Scabini, L. F., Condori, R. H., Gonc¸alves, W. N., and Bruno,
O. M. (2019). Multilayer complex network descrip-
tors for color–texture characterization. Information
Sciences, 491:30–47.
Schmidt, W., Kraaijveld, M., and Duin, R. (1992). Feed-
forward neural networks with random weights. In
Proceedings., 11th IAPR International Conference on
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
220