REFERENCES
Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B.
(2014). 2d human pose estimation: New benchmark and
state of the art analysis. In Proceedings of the IEEE
Conference on computer Vision and Pattern
Recognition (pp. 3686-3693).
Cai, J., Gu, S., & Zhang, L. (2018). Learning a deep single
image contrast enhancer from multi-exposure images.
IEEE Transactions on Image Processing, 27(4), 2049-
2062.
Chen, C., Chen, Q., Xu, J., & Koltun, V. (2018). Learning
to see in the dark. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 3291-3300).
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam,
H. (2018). Encoder-decoder with atrous separable
convolution for semantic image segmentation. In
Proceedings of the European conference on computer
vision (ECCV) (pp. 801-818).
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., ... & Schiele, B. (2016). The
cityscapes dataset for semantic urban scene
understanding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 3213-
3223.
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-
Martinez, V., Martinez-Gonzalez, P., & Garcia-
Rodriguez, J. (2018). A survey on deep learning
techniques for image and video semantic
segmentation. Applied Soft Computing, 70, 41-65.
Geiger, A., Lenz, P., & Urtasun, R. (2012, June). Are we
ready for autonomous driving? the kitti vision
benchmark suite. In 2012 IEEE conference on
computer vision and pattern recognition (pp. 3354-
3361). IEEE.
Guo, C., Li, C., Guo, J., Loy, C.C., Hou, J., Kwong, S., &
Cong, R. (2020). Zero-reference deep curve estimation
for low-light image enhancement. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 1780-1789.
Güler, R. A., Neverova, N., & Kokkinos, I. (2018).
Densepose: Dense human pose estimation in the wild.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 7297-7306).
Lee, S., Rim, J., Jeong, B., Kim, G., Woo, B., Lee, H., &
Kwak, S. (2023). Human pose estimation in extremely
low-light conditions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, 704-714.
Li, C., Guo, C., Han, L., Jiang, J., Cheng, M. M., Gu, J., &
Loy, C. C. (2021). Low-light image and video
enhancement using deep learning: A survey. IEEE
transactions on pattern analysis and machine
intelligence, 44(12), 9396-9416.
Liang, J., Wang, J., Quan, Y., Chen, T., Liu, J., Ling, H., &
Xu, Y. (2021). Recurrent exposure generation for low-
light face detection. IEEE Transactions on
Multimedia, 24, 1609-1621.
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., ... & Zitnick, C. L. (2014). Microsoft
coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part
V 13 (pp. 740-755). Springer International Publishing.
Liu, J., Xu, D., Yang, W., Fan, M., & Huang, H. (2021).
Benchmarking low-light image enhancement and
beyond.
International Journal of Computer Vision, 129,
1153-1184.
Muhammad, K., Hussain, T., Ullah, H., Del Ser, J., Rezaei,
M., Kumar, N., ... & de Albuquerque, V. H. C. (2022).
Vision-based semantic segmentation in scene
understanding for autonomous driving: Recent
achievements, challenges, and outlooks. IEEE
Transactions on Intelligent Transportation
Systems, 23(12), 22694-22715.
Ogino, Y., Shoji, Y., Toizumi, T., & Ito, A. (2024). ERUP-
YOLO: Enhancing Object Detection Robustness for
Adverse Weather Condition by Unified Image-
Adaptive Processing. arXiv preprint arXiv:2411.02799.
Ono, S., Ogino, Y., Toizumi, T., Ito, A., & Tsukada, M.
(2024). Improving Low-Light Image Recognition
Performance Based on Image-Adaptive Learnable
Module. In The 19th International Conference on
Computer Vision Theory and Applications, vol. 3, 721-
728.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:
Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III, 234-241. Springer
International Publishing.
Tan, X., Xu, K., Cao, Y., Zhang, Y., Ma, L., & Lau, R.W.
(2021). Night-time scene parsing with a large real
dataset. IEEE Transactions on Image Processing, 30,
9085-9098.
Tian, Z., Qu, P., Li, J., Sun, Y., Li, G., Liang, Z., & Zhang,
W. (2023). A survey of deep learning-based low-light
image enhancement. Sensors, 23(18), 7763.
Wang, H., Chen, Y., Cai, Y., Chen, L., Li, Y., Sotelo, M.
A., & Li, Z. (2022). SFNet-N: An improved SFNet
algorithm for semantic segmentation of low-light
autonomous driving road scenes. IEEE Transactions on
Intelligent Transportation Systems, 23(11), 21405-
21417.
Wang, W., Wu, X., Yuan, X., & Gao, Z. (2020). An
experiment-based review of low-light image
enhancement methods. Ieee Access, 8, 87884-87917.
Wang, X., Zhao, Y., & Pourpanah, F. (2020). Recent
advances in deep learning. International Journal of
Machine Learning and Cybernetics, 11, 747-750.
Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., & Kot,
A. (2022). Low-light image enhancement with
normalizing flow. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 3,
2604-2612.