
Chen, Z., Zhang, J. M., Sarro, F., and Harman, M.
(2024). Fairness improvement with multiple protected
attributes: How far are we? In Conference on Soft-
ware Engineering.
Davoudi, A., Chae, S., Evans, L., Sridharan, S., Song,
J., Bowles, K. H., McDonald, M. V., and Topaz, M.
(2024). Fairness gaps in machine learning models for
hospitalization and emergency department visit risk
prediction in home healthcare patients with heart fail-
ure. Journal of Medical Informatics, page 105534.
Doecke, J. D., Laws, S. M., Faux, N. G., Wilson, W., Burn-
ham, S. C., Lam, C.-P., Mondal, A., Bedo, J., Bush,
A. I., Brown, B., et al. (2012). Blood-based pro-
tein biomarkers for diagnosis of alzheimer disease.
Archives of neurology, 69(10):1318–1325.
Fatima, M. and Pasha, M. (2017). Survey of machine learn-
ing algorithms for disease diagnostic. Journal of In-
telligent Learning Systems and Applications, 9(01):1–
16.
Fazelpour, S. and Danks, D. (2021). Algorithmic bias:
Senses, sources, solutions. Philosophy Compass,
16(8):e12760.
FDA (2022). Clinical decision support software: guidance
for industry and food and drug administration staff.
FDA Digirepo. NLM. NIH.
Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C.,
and Venkatasubramanian, S. (2015). Certifying and
removing disparate impact. In Conference on Knowl-
edge Discovery and Data Mining, pages 259–268.
Feng, Q., Du, M., Zou, N., and Hu, X. (2024). Fair machine
learning in healthcare: A survey. IEEE Transactions
on Artificial Intelligence.
Frisoni, G. (2001). Structural imaging in the clinical diag-
nosis of alzheimer’s disease: problems and tools.
Ginsberg, Y., Quintero, J., Anand, E., Casillas, M.,
and Upadhyaya, H. P. (2014). Underdiagnosis of
attention-deficit/hyperactivity disorder in adult pa-
tients: a review of the literature. The Primary Care
Companion for CNS Disorders, 16(3):23591.
Grampurohit, S. and Sagarnal, C. (2020). Disease predic-
tion using machine learning algorithms. In Confer-
ence for Emerging Technology, pages 1–7. IEEE.
Gresenz, C. R., Mitchell, J. M., Marrone, J., and Federoff,
H. J. (2020). Effect of early-stage alzheimer’s disease
on household financial outcomes. Health Economics,
29(1):18–29.
Gresenz, C. R., Mitchell, J. M., Rodriguez, B., Turner, R. S.,
and Van der Klaauw, W. (2024). The financial conse-
quences of undiagnosed memory disorders. The Fed-
eral Reserve Bank of New York.
Grote, T. and Keeling, G. (2022). Enabling fairness in
healthcare through machine learning. Ethics and In-
formation Technology, 24(3):39.
Hardt, M., Price, E., and Srebro, N. (2016). Equality of op-
portunity in supervised learning. Advances in Neural
Information Processing Systems, 29.
Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. (2019). Parameter-efficient transfer learning
for nlp. In Conference on Machine Learning, pages
2790–2799. PMLR.
Howard, J. and Ruder, S. (2018). Universal language model
fine-tuning for text classification. arXiv preprint
arXiv:1801.06146.
Janosi, A., Steinbrunn, W., Pfisterer, M., and Detrano, R.
(1988). Heart Disease. UCI Machine Learning Repos-
itory. DOI: https://doi.org/10.24432/C52P4X.
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang,
Y., Dong, Q., Shen, H., and Wang, Y. (2017). Arti-
ficial intelligence in healthcare: past, present and fu-
ture. Stroke and Vascular Neurology, 2(4).
Kamiran, F. and Calders, T. (2012). Data preprocessing
techniques for classification without discrimination.
Knowledge and Information Systems, 33(1):1–33.
Kang, J., Xie, T., Wu, X., Maciejewski, R., and Tong, H.
(2022). Infofair: Information-theoretic intersectional
fairness. In Conference on Big Data, pages 1455–
1464. IEEE.
Li, F., Wu, P., Ong, H. H., Peterson, J. F., Wei, W.-Q.,
and Zhao, J. (2023). Evaluating and mitigating bias
in machine learning models for cardiovascular dis-
ease prediction. Journal of Biomedical Informatics,
138:104294.
Liu, X., He, P., Chen, W., and Gao, J. (2019). Multi-task
deep neural networks for natural language understand-
ing. arXiv preprint arXiv:1901.11504.
Loi, M., Herlitz, A., and Heidari, H. (2021). Fair equality
of chances for prediction-based decisions. Economics
& Philosophy, pages 1–24.
Ma, J., Deng, J., and Mei, Q. (2021). Subgroup generaliza-
tion and fairness of graph neural networks. Advances
in Neural Information Processing Systems, 34:1048–
1061.
Massey Jr, F. J. (1951). The kolmogorov-smirnov test for
goodness of fit. Journal of the American statistical
Association, 46(253):68–78.
Min, B., Ross, H., Sulem, E., Veyseh, A. P. B., Nguyen,
T. H., Sainz, O., Agirre, E., Heintz, I., and Roth, D.
(2023). Recent advances in natural language process-
ing via large pre-trained language models: A survey.
ACM Computing Surveys, 56(2):1–40.
Paraskevaidi, M., Morais, C. L., Halliwell, D. E., Mann,
D. M., Allsop, D., Martin-Hirsch, P. L., and Mar-
tin, F. L. (2018). Raman spectroscopy to diagnose
alzheimer’s disease and dementia with lewy bodies
in blood. ACS Chemical Neuroscience, 9(11):2786–
2794.
Peng, K., Chakraborty, J., and Menzies, T. (2022). Fair-
mask: Better fairness via model-based rebalancing of
protected attributes. Transactions on Software Engi-
neering, 49(4):2426–2439.
Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., and Wein-
berger, K. Q. (2017). On fairness and calibration. Ad-
vances in Neural Information Processing Systems, 30.
Rathore, S., Habes, M., Iftikhar, M. A., Shacklett, A., and
Davatzikos, C. (2017). A review on neuroimaging-
based classification studies and associated feature ex-
traction methods for alzheimer’s disease and its pro-
dromal stages. NeuroImage, 155:530–548.
HEALTHINF 2025 - 18th International Conference on Health Informatics
252