REFERENCES
Ahlmann-Eltze, C., & Huber, W. (2023). Comparison of
transformations for single-cell RNA-seq data. Nature
Methods, 20(5), 665-672.
Bacher, R., Chu, L. F., Leng, N., Gasch, A. P., Thomson, J.
A., Stewart, R. M., Newton, M., & Kendziorski, C.
(2017). SCnorm: Robust normalization of single-cell
RNA-seq data. Nature Methods, 14(6), 584–586.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., &
Lefebvre, E. (2008). Fast unfolding of communities in
large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008(10), P10008.
Booeshaghi, A. S., Hallgrímsdóttir, I. B., Gálvez-Merchán,
Á., & Pachter, L. (2022). Depth normalization for
single-cell genomics count data. bioRxiv.
Brown, J., Ni, Z., Mohanty, C., Bacher, R., & Kendziorski,
C. (2021). Normalization by distributional resampling
of high throughput single-cell RNA-sequencing data.
Bioinformatics, 37(22), 4123-4128.
Cakir, B., Prete, M., Huang, N., Van Dongen, S., Pir, P., &
Kiselev, V. Y. (2020). Comparison of visualization
tools for single-cell RNAseq data. NAR Genomics and
Bioinformatics, 2(3), lqaa052.
Choudhary, S., & Satija, R. (2022). Comparison and
evaluation of statistical error models for scRNA-seq.
Genome Biology, 23(1), 27.
Chung, W., Eum, H. H., Lee, H. O., Lee, K. M., Lee, H. B.,
Kim, K. T., ... & Park, W. Y. (2017). Single-cell RNA-
seq enables comprehensive tumour and immune cell
profiling in primary breast cancer. Nature
communications, 8(1), 15081.
Cole, M. B., Risso, D., Wagner, A., DeTomaso, D., Ngai,
J., Purdom, E., ... & Yosef, N. (2019). Performance
assessment and selection of normalization procedures
for single-cell RNA-seq. Cell systems, 8(4), 315-328.
Conover, W. J., & Iman, R. L. (1979). On multiple-
comparisons procedures (Tech. Rep. LA-7677-MS).
Los Alamos Scientific Laboratory.
Cuevas-Diaz Duran, R., Wei, H., & Wu, J. (2024). Data
normalization for addressing the challenges in the
analysis of single-cell transcriptomic datasets. BMC
Genomics, 25, 444.
Dice, L. R. (1945). Measures of the amount of ecologic
association between species. Ecology, 26(3), 297–302.
Ding, J., Adiconis, X., Simmons, S. K., Kowalczyk, M. S.,
Hession, C. C., Marjanovic, N. D., ... & Levin, J. Z.
(2020). Systematic comparison of single-cell and
single-nucleus RNA-sequencing methods. Nature
biotechnology, 38(6), 737-746.
Do, V. H., & Canzar, S. (2021). A generalization of t-SNE
and UMAP to single-cell multimodal omics. Genome
Biology, 22(1), 130.
Hafemeister, C., & Satija, R. (2019). Normalization and
variance stabilization of single-cell RNA-seq data using
regularized negative binomial regression. Genome
Biology, 20(1), 296.
Hubert, L. (1974). Approximate evaluation techniques for
the single-link and complete-link hierarchical
clustering procedures. Journal of the American
Statistical Association, 69(347), 698–704.
Hwang, B., Lee, J. H., & Bang, D. (2018). Single-cell RNA
sequencing technologies and bioinformatics pipelines.
Experimental & molecular medicine, 50(8), 1-14.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in
one-criterion variance analysis. Journal of the
American Statistical Association, 47(260), 583–621.
Lause, J., Berens, P., & Kobak, D. (2021). Analytic Pearson
residuals for normalization of single-cell RNA-seq
UMI data. Genome Biology, 22(1), 258.
Luecken, M. D., & Theis, F. J. (2019). Current best
practices in single ‐ cell RNA
‐ seq analysis: A
tutorial. Molecular Systems Biology, 15(6).
Lun, A. T. L., Bach, K., & Marioni, J. C. (2016). Pooling
across cells to normalize single-cell RNA sequencing
data with many zero counts. Genome Biology, 17(1).
Lytal, N., Ran, D., & An, L. (2020). Normalization methods
on single-cell RNA-seq data: an empirical survey.
Frontiers in genetics, 11, 41.
MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In L. M. Le
Cam & J. Neyman (Eds.), Proceedings of the fifth
Berkeley symposium on mathematical statistics and
probability (Vol. 1, pp. 281–297). University of
California Press.
Marczyk, M., Jaksik, R., Polanski, A., & Polanska, J.
(2018). Gamred—Adaptive filtering of high-
throughput biological data. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 17(1),
149-157.
McInnes, L., Healy, J., Saul, N., & Großberger, L. (2018).
UMAP: Uniform Manifold Approximation and
Projection. Journal of Open Source Software, 3(29).
Rand, W. M. (1971). Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66(336), 846-850.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal
of computational and applied mathematics, 20, 53-65.
Shannon, C. E. (1948). A mathematical theory of
communication. Bell System Technical Journal, 27(3),
379–423.
Sørensen, T. (1948). A method of establishing groups of
equal amplitude in plant sociology based on similarity
of species and its application to analyses of the
vegetation on Danish commons. Kongelige Danske
Videnskabernes Selskab, 5(4), 1–34.
Tukey, J. W. (1949). Comparing individual means in the
analysis of variance. Biometrics, 99-114.
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S., &
Marioni, J. C. (2017). Normalizing single-cell RNA
sequencing data: challenges and opportunities. Nature
methods, 14(6), 565-571.
Van der Maaten, L., & Hinton, G. (2008). Visualizing data
using t-SNE. Journal of machine learning research,
9(11).
Vieth, B., Parekh, S., Ziegenhain, C., Enard, W., &
Hellmann, I. (2019). A systematic evaluation of single