
big five personality traits from handwriting. EURASIP
Journal on Image and Video Processing, 2018(1):57.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.
org.
He, H. and Garcia, E. A. (2009). Learning from imbalanced
data. IEEE Transactions on Knowledge and Data En-
gineering, 21(9):1263–1284.
Koepf, M., Kleber, F., and Sablatnig, R. (2022). Writer
Identification and Writer Retrieval Using Vision
Transformer for Forensic Documents, pages 352–366.
Springer International Publishing.
Li, M., Lv, T., Cui, L., Lu, Y., Florencio, D., Zhang, C.,
Li, Z., and Wei, F. (2021). Trocr: Transformer-based
optical character recognition with pre-trained models.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In 2017
IEEE International Conference on Computer Vision
(ICCV), pages 2999–3007.
Luo, J., Yuan, Y., and Xu, S. (2024). Improving gbdt per-
formance on imbalanced datasets: An empirical study
of class-balanced loss functions.
Mukherjee, S., Ghosh, I., and Mukherjee, D. (2022). Big
Five Personality Prediction from Handwritten Char-
acter Features and Word ‘of’ Using Multi-label Clas-
sification, pages 275–299.
Nair, G., Rekha, V., and Krishnan, M. S. (2021). Handwrit-
ing Analysis Using Deep Learning Approach for the
Detection of Personality Traits, pages 531–539.
Nam, J., Kim, J., Gurevych, I., and F
¨
urnkranz, J. (2014).
Large-scale multi-label text classification — revisiting
neural networks. In Machine Learning and Knowl-
edge Discovery in Databases, pages 437–452, Berlin,
Heidelberg. Springer Berlin Heidelberg.
Puttaswamy, B. S. and Thillaiarasu, N. (2025). Fine
densenet based human personality recognition using
english hand writing of non-native speakers. Biomed-
ical Signal Processing and Control, 99:106910.
Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and
Dosovitskiy, A. (2021). Do vision transformers see
like convolutional neural networks? Advances in neu-
ral information processing systems, 34:12116–12128.
Rahman, A. and Halim, Z. (2022). Predicting the big
five personality traits from hand-written text features
through semi-supervised learning. Multimedia Tools
and Applications, 81:1–17.
Roberts, B. W. and Mroczek, D. (2008). Personality trait
change in adulthood. Current Directions in Psycho-
logical Science, 17(1):31–35. PMID: 19756219.
Sayed, A. M. A., Selim, A. W. G., Ashraf, A., and Emam,
E. (2024). Analyzing handwriting to infer personal-
ity traits: A deep learning framework. In 2024 In-
telligent Methods, Systems, and Applications (IMSA),
pages 58–63.
Shorten, C. and Khoshgoftaar, T. (2019). A survey on image
data augmentation for deep learning. Journal of Big
Data, 6:60.
Shree, N. and Dr.Siddaraju (2022). Analysis of personality
based on handwriting using deep learning.
Tanha, J., Abdi, Y., Samadi, N., Razzaghi, N., and Asad-
pour, M. (2020). Boosting methods for multi-class im-
balanced data classification: an experimental review.
Journal of Big Data, 7(1):70.
Vargoorani, Z. E. and Suen, C. Y. (2024). License plate de-
tection and character recognition using deep learning
and font evaluation. In Suen, C. Y., Krzyzak, A., Ra-
vanelli, M., Trentin, E., Subakan, C., and Nobile, N.,
editors, Artificial Neural Networks in Pattern Recog-
nition, pages 231–242. Springer Nature Switzerland.
Xu, Y., Tang, Y., and Suen, C. Y. (2024). Two key factors
in handwriting analysis for personality prediction. In
Fifth International Conference on Image, Video Pro-
cessing, and Artificial Intelligence (IVPAI 2023), vol-
ume 13074, pages 102–107. SPIE.
Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L.
(2021). Scaling vision transformers. arXiv preprint
arXiv:2106.04560.
ICPRAM 2025 - 14th International Conference on Pattern Recognition Applications and Methods
150